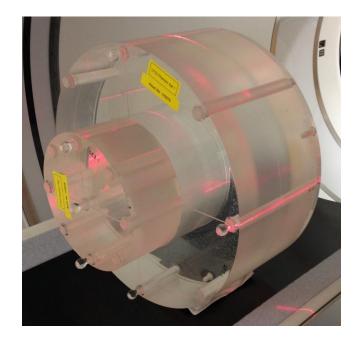


Six years of AEC testing – what have we learned?

Gareth Iball, Alexis Moore, Lizzy Crawford


Why test AEC?

- Used for vast majority of clinical scans
 - Including Radiotherapy and Nuclear Medicine CT
- Used to specify required image quality/delivered dose
 - Major determinant of patient dose and clinical image quality
- Potential for non-diagnostic images/over-dosing if system fails

The Leeds Teaching Hospitals NHS Trust

Rationale for the phantom used

- For routine QA tests we take:
 - Raysafe X2
 - Catphan 600
 - Head CTDI phantom and body annulus
 - Laptop
- Didn't want to carry any additional equipment
- Offset head phantom within body annulus to create three part phantom

Potential phantom issues?

- It is not elliptical
 - No rotational attenuation changes
- It is uniform PMMA
 - Cannot assess any CT number changes if AEC kV changes
- It has large step changes in attenuation
 - Not clinically representative attenuation variation

• Park these for later...

Which performance metrics?

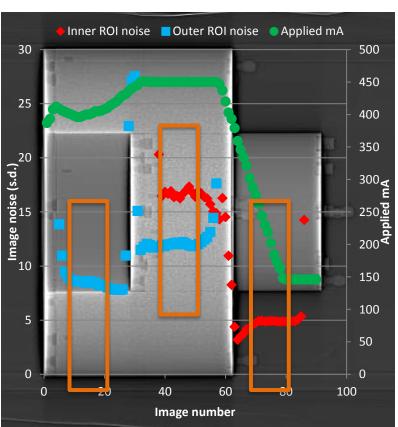
- AEC systems select mA and in some cases kV
- Therefore record
 - Selected kV
 - Average mA (mAs) for scan
 - mA profile along phantom
 - Average CTDIvol for scan (DLP)
- AEC systems are trying to deliver a "specified image quality"
 - Measure noise in each image
 - Plot a noise profile along phantom

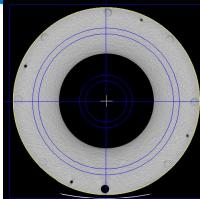
Testing Method: Protocol Selection

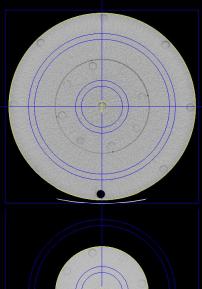
- Set up dedicated Physics AEC scan protocol
 - Based on clinical Thorax or Abdomen scan protocol
 - Use auto kV selection where available
 - If protocol has min/max mA settings, adjust these and the AEC control parameter to ensure that mA does not reach min or max in any of phantom sections
 - Define helical scan length within protocol
 - Record other AEC settings e.g. CARE Dose 4D adaptations
 - Reconstruction:
 - 5mm images, 50% overlapping
 - 350mm DFOV
 - Soft tissue recon kernel
 - Use iterative reconstruction where possible

Testing Method: Scanning Technique

- Carefully centre phantom in gantry
 - Ensure it is level
- Perform planning scan(s)
 - Constrain helical scan to physical length of phantom
 - Thus whole mA range can be used in the phantom, not in air
- Undertake one helical scan
 - Repeat scans performed as required
 - At acceptance perform further scans to fully test AEC system
- Record post scan average mA (mAs), CTDIvol, DLP


Testing Method: Image Analysis


- Simple IQWorks analysis tree
 - Position two annular ROIs in each image
 - One in head phantom
 - One in body annulus
 - Measure CT# and noise
 - Extract mA from each image


The Leeds Teaching Hospitals NHS Trust

Annular ROIs

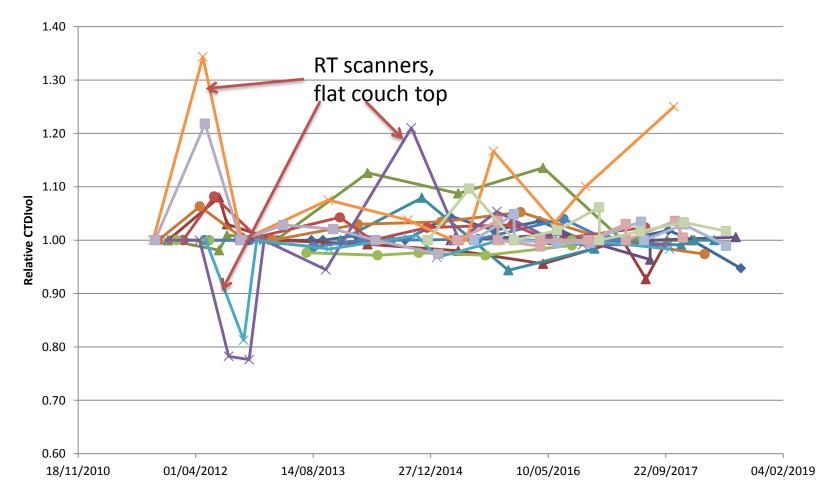
- At each end of phantom one of ROIs is in air not PMMA
- Spikes in noise at boundaries of sections
- Take noise from central 4cm of each section for global noise analysis

Systems tested

- Tested systems from all 4 CT manufacturers
 - GE: 9, Philips: 2, Siemens: 17, Toshiba: 1
 - 229 surveys where AEC test performed
 - 137 surveys where baselines not set/re-set
 - Baseline re-set for new tube/generator, change of protocol, other major maintenance as necessary

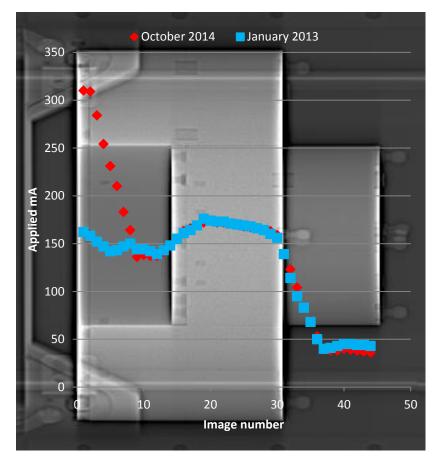
Systems with auto kV selection

- Seven scanners with auto kV software
 - 47 sets of AEC tests performed
 - Scanner selected kV never changed from baseline value

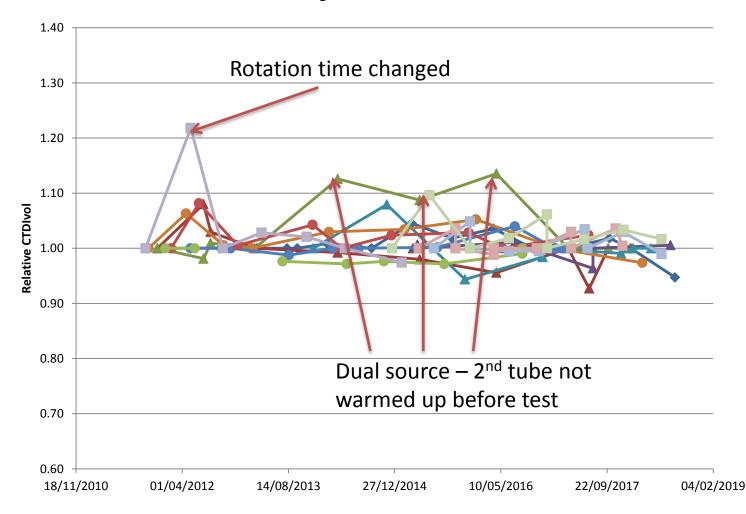


Results by manufacturer

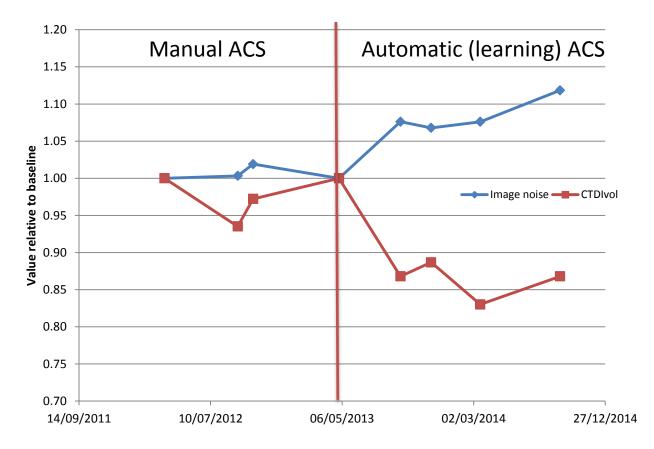
	Number of tests	CTDIvol >5%	CTDIvol >10%	CTDIvol >15%	Noise >2%	Noise >5%	Noise >10%
GE	51	28	12	8	60	24	12
Philips	11	63.6	54.5	27	54.5	54.5	9.1
Siemens	157	21.4	10.2	6.1	25.5	11.2	2
Toshiba	10	40	30	20	20	20	0
Total	229	28.5	16.1	9.5	35.0	18.2	4.4


Siemens scanners

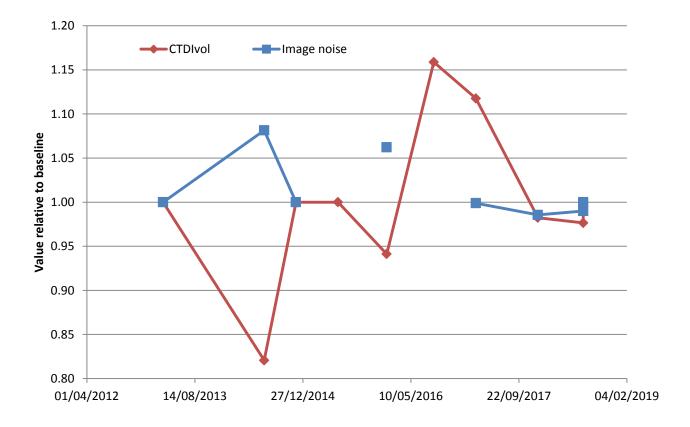
The Leeds Teaching Hospitals NHS Trust


Radiotherapy couch top issues

- iBeam Evo couch top has denser area at join of main section and head extender
 - RT treatments avoid this area
 - Causes notable mA increases
 - Cause of most "failures" on our CT Simulators
 - These falsely distort the failure rates



Siemens without RT systems

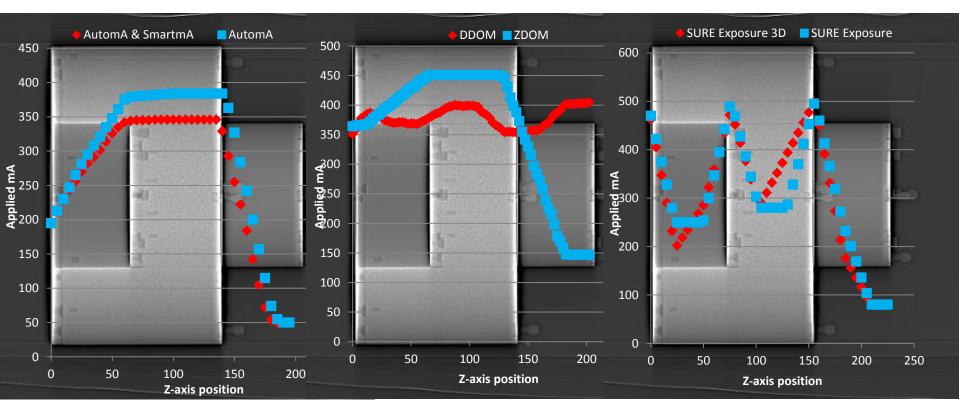


Philips scanners

Toshiba scanner

Revised results when obvious errors removed

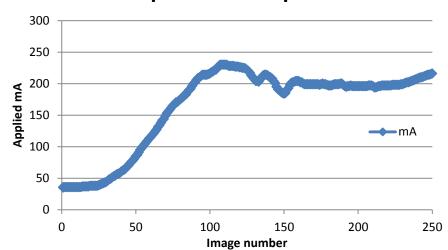
	Number of tests	CTDIvol >5%	CTDIvol >10%	CTDIvol >15%	Noise >2%	Noise >5%	Noise >10%
Original data	229	28.5	16.1	9.5	35.0	18.2	4.4
Errors removed	211	20.5	8.2	4.9	31.1	16.4	4.1


Tolerances for AEC test

- Dosimetry:
 - >15% change in average mA, CTDIvol or DLP
 - Notable change in mA profile

- Image noise:
 - >10% change in global image noise
 - Notable change in noise profile

Phantom issues – non-elliptical



 Demonstrates phantom (and couch) presents rotational variations in attenuation which are detected and accounted for by AEC systems

The Leeds Teaching Hospitals NHS Trust

Phantom issues – step change in mA too great

- Typically observe factor of 3 to 8 variation in mA between head and body sections
- Frequently observe similar mA variations in c-spine CT over ~10cm scan length
- mA variations in phantom well matched to scan type where AEC use is very beneficial

mA profile for c-spine CT

Potential phantom issues?

- It is not elliptical
 - Does provide rotational variations in attenuation due to helical scan and presence of couch
- It is uniform PMMA
 - Haven't seen AEC system change selected kV
 - PMMA construction fine for routine QA
- It has large step changes in attenuation
 - Not different from mA profiles observed clinically

What have we learned?

- Robust testing of AEC is straightforward
- A simple phantom can be used
 - Sensitive to x-y-z mA modulation
- Dedicated Physics scan protocol is needed
- Take care over phantom set up/scan technique
 - Position in gantry, scan length, scan direction
- Reproducible results are possible
- Manufacturers don't know what to do if tolerance is exceeded

JUST DO T.