Patients are not made of plastic

Using Water-Equivalent Diameter to calculate patient size and Size-Specific Dose Estimates for CT Scans

Kate Sexton Ninewells Hospital, Dundee

Contents

- Dose Indices in Computed Tomography
- Study Outline
- Estimating Patient Diameter
- Calculating Diameter from CT images
- Size-Specific Dose Estimates
- Summary

Dose Indices in Computed Tomography

- Study Outline
- Estimating Patient Diameter
- Calculating Diameter from CT images
- Size-Specific Dose Estimates
- Summary

Dose Indices

$\mathsf{CTDI}_{\mathsf{vol}}$

- dose to air measured using
- 100mm pencil ionisation chamber inside a
- polymethyl methacrylate (PMMA) phantom

16cm (head) & 32cm (body) diameters

Patient h	Name: CTD	132_02		Exa	m no: 2738
Accessio	in Numbei	16 Jul 2018			
Patient I	D: MPQ16	Discovery MI			
Exam De	escription:	Abdomen			
		Dose Re	port		
Series	Туре	Scan Range (mm)	CTDivol (mGy)	DLP (mGy-cm)	Phantom cm
1	Scout				
2	Axial	160.000-1229.375	15.33	260.62	Body 32
2	Helical	160.000-1229.375	18.66	348.47	Body 32
3	Axial	160.000-1229.375	14.20	241.35	Body 32
		Total	Exam DLP:	850.45	
		1/1			
	ר – ר	scan ler	ngth		тпі

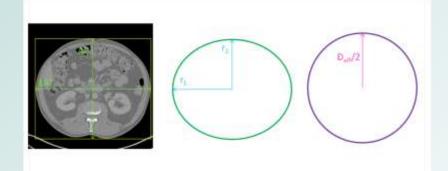
Dose Indices

- What is the issue with the dose indices used?
 - PMMA phantom is homogeneous: patient is not
 - Bones, lungs (air), organs, fat
 - PMMA phantom is cylindrical: patient is not
 - Larger in one dimension than the other
 - PMMA phantom is plastic: patient is not
- Thus, CTDI_{vol} is *not* a suitable descriptor for patient dose
- Patient size and/or composition should be taken into account: Size-Specific Dose Estimates

Dose Indices in Computed Tomography

- Study Outline
- Estimating Patient Diameter
- Calculating Diameter from CT images
- Size-Specific Dose Estimates
- Summary

Study Outline


- We want to know :
 - if taking patient size into account affects reported dose?
 - and, if so, by how much?
- Identified 823 suitable Abdomen-Pelvis CT exams from 01/11/17 to 24/04/18
- Calculated patient diameters and assigned size categories
- Obtained SSDEs and compared to reported dose for each category

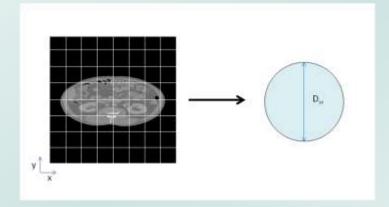
Dose Indices in Computed Tomography

- Study Outline
- Estimating Patient Diameter
- Calculating Diameter from CT images
- Size-Specific Dose Estimates
- Summary

Effective Diameter

- Assume patient cross-section is elliptical
 - Lateral dimension (LAT) = $2*r_1$
 - Anterior-Posterior dimension (AP) = $2*r_2$
- Area of ellipse: $A = \pi r_1 r_2$
- Diameter of circle of same area: $D_{eff} = \sqrt{AP \times LAT}$

Water-Equivalent Diameter

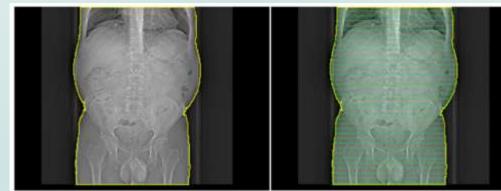

- The X-ray attenuation of a patient can be expressed in terms of a cylinder of water having the same attenuation
- CT number or attenuation value of pixel (x,y) in the CT image is defined using the linear attenuation coefficient of water

Measured in Hounsfield Units (HU)

$$CT(x,y) = \left(\frac{\mu(x,y) - \mu_{water}}{\mu_{water}}\right) \times 1000$$

Water-Equivalent Diameter

 Calculate area of patient body and find mean CT number in this area to obtain waterequivalent diameter

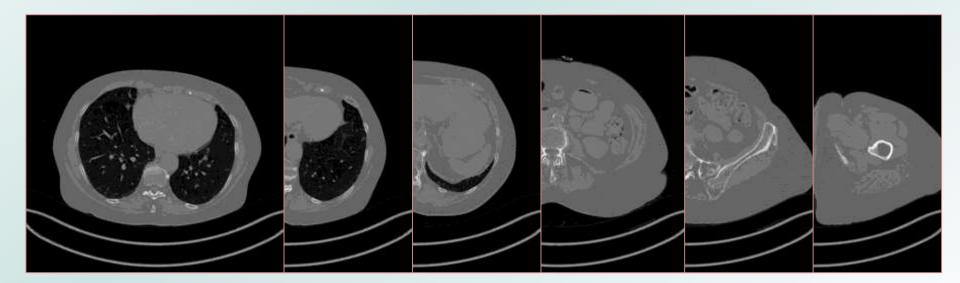

$$D_w = 2\sqrt{\frac{A_w}{\pi}}$$
$$= 2\sqrt{\left[\frac{1}{1000}\overline{\mathrm{CT}(x,y)}_{ROI} + 1\right]\frac{A_{ROI}}{\pi}}$$

Water-Equivalent Diameter

- Takes attenuation of the body into account
- In general, expect water-equivalent diameter to be:
 - larger in areas with high attenuation (i.e. bone)
 - smaller in areas with low attenuation (i.e. lungs)

AP Localiser Scan

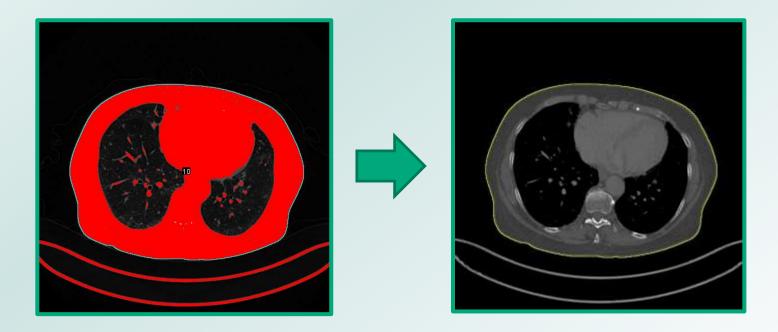
- Each pixel in a horizontal line is a ray-sum, L_w
 - The more attenuation, the higher the ray sum and the brighter the pixel
 - Adding the contributions from each pixel in a horizontal line gives water-equivalent area of that section


 $A_w = \sum L_w \times d$

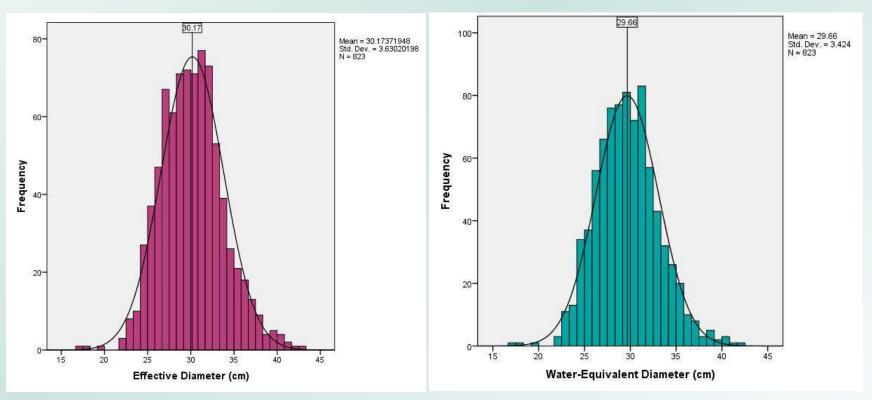
Dose Indices in Computed Tomography

- Study Outline
- Estimating Patient Diameter
- Calculating Diameter from CT images
- Size-Specific Dose Estimates
- Summary

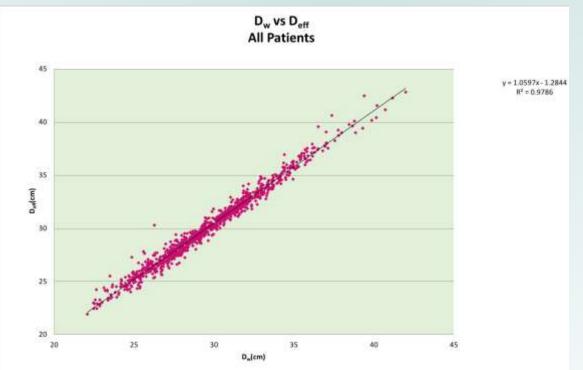
- ImageJ is an open source Java-based image processing package
 - Can handle 'stacks' of images sharing one window
 - Can identify pixels having a value over a certain threshold
 - Can define regions of interest
 - Can extract data: dimensions, area, mean pixel value
 - Can extract DICOM information


- Import CT image
- A CT image is a stack of images along the body of the patient

- Can identify pixels having a value over a certain threshold
 - Create a binary image by setting a threshold value of -140HU to isolate body

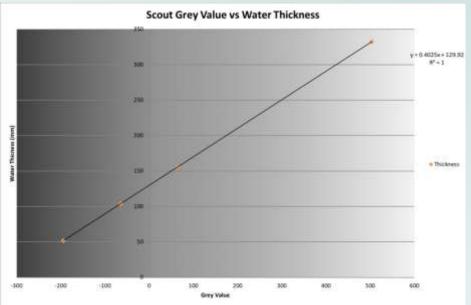


- Can define regions of interest (ROIs)
 - Outline only the body and copy this to the original image for each slice



- Can extract data:
 - dimensions, area, mean pixel value
 - Extract area of ROI
 - Extract mean CT value within ROI
 - water-equivalent diameter
 - Extract maximum x and y dimensions of ROI
 - effective diameter

 Distributions of patient diameter were obtained

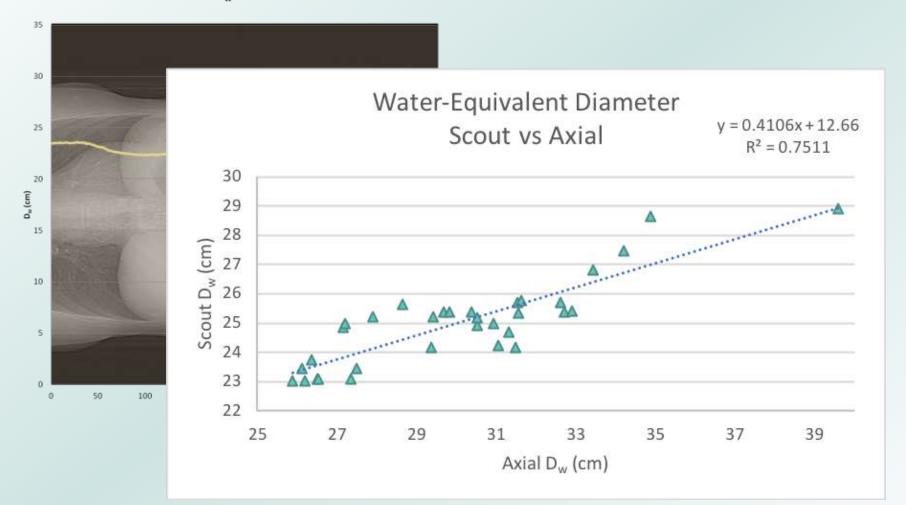

 Water-equivalent diameter and effective diameter were found to be interchangeable for abdomen-pelvis CT scans



Calculating Diameter from the SPR

- Experimental data used to calibrate grey value to water-thickness
 - Perspex blocks & CTDI phantoms

Offset due to couch



Calculating Diameter from the SPR

- ImageJ used to
 - identify patient contour
 - sum pixel values for each horizontal line
- Convert sum to water-thickness and take couch offset and detector spacing into account
- Calculate water-equivalent diameter for each horizontal line

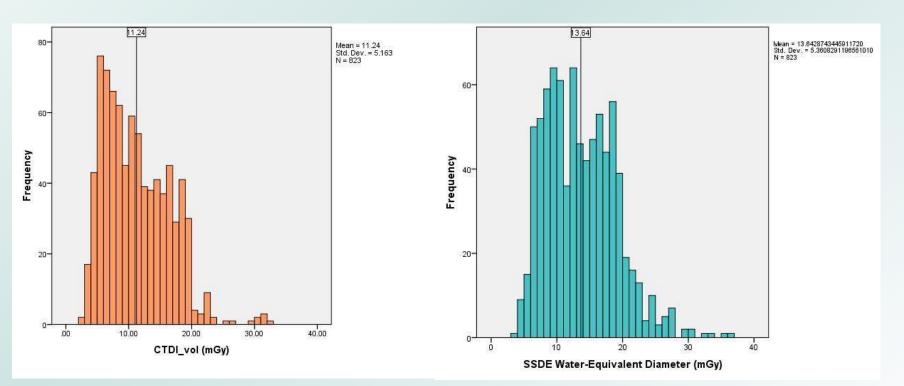
Calculating Diameter from the SPR

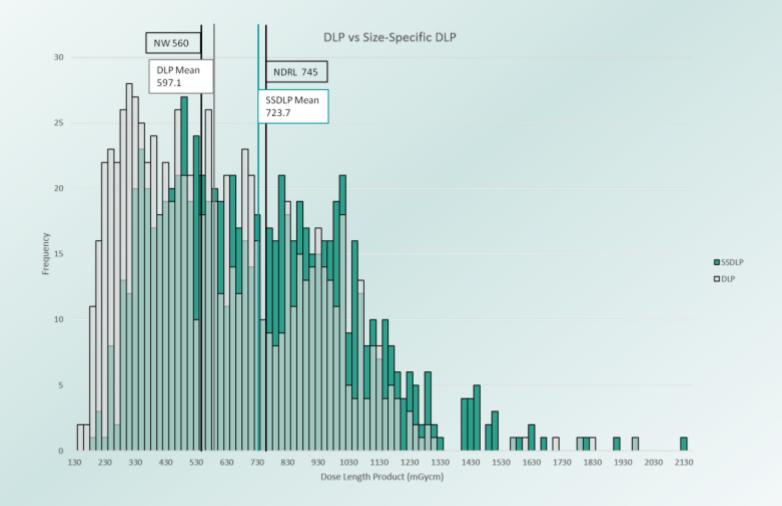
D_w Scout

Dose Indices in Computed Tomography

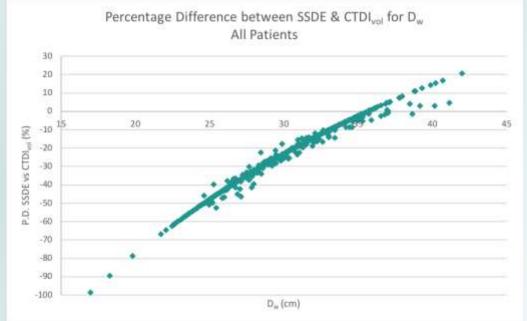
- Study Outline
- Estimating Patient Diameter
- Calculating Diameter from CT images
- Size-Specific Dose Estimates
- Summary

• The average diameter over all slices, *x*, is used to obtain a conversion factor:

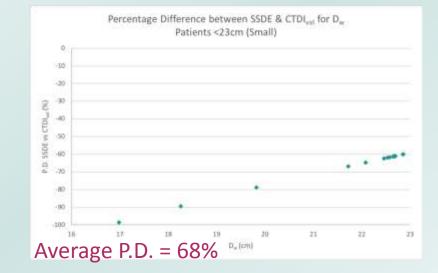

$$y = ae^{-bx}$$

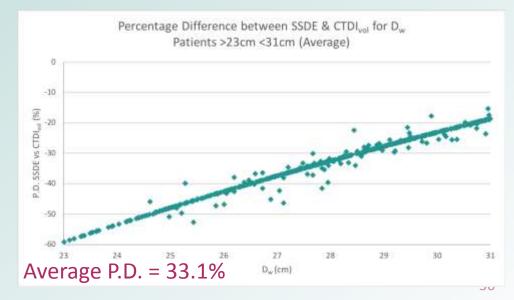

[AAPM TG 204]

This is then used to correct CTDI_{vol} for patient size


$$SSDE = y \times CTDI_{vol}$$

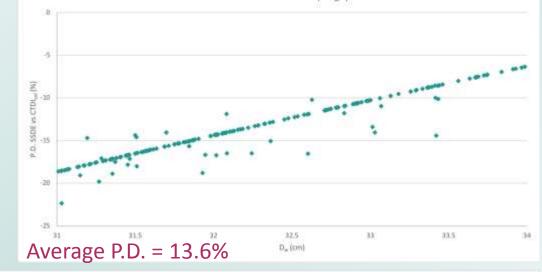
CTDI_{vol} misrepresents dose by ≈20%

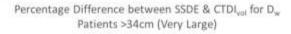


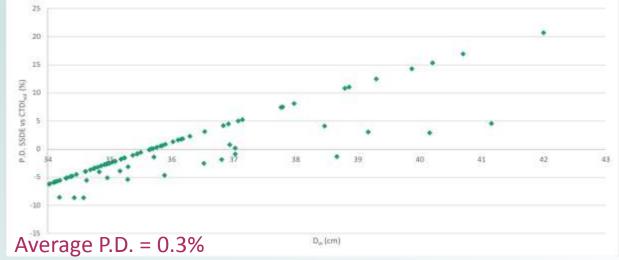

 Percentage difference (P.D.) between displayed CTDI_{vol} and SSDE for D_w shows misrepresentation of dose is most extreme for patients of smaller diameters

• Patient size categories

Category	$D_w(\mathbf{cm})$		
Small	$D_w < 23$		
Average	$23 \le D_w < 31$		
Large	$31 \le D_w < 34$		
Very Large	$D_w \ge 34$		





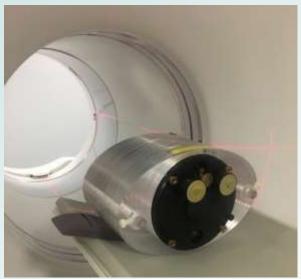

 Patient size categories

Category	$D_w(\mathbf{cm})$		
Small	$D_w < 23$		
Average	$23 \le D_w < 31$		
Large	$31 \le D_w < 34$		
Very Large	$D_w \ge 34$		

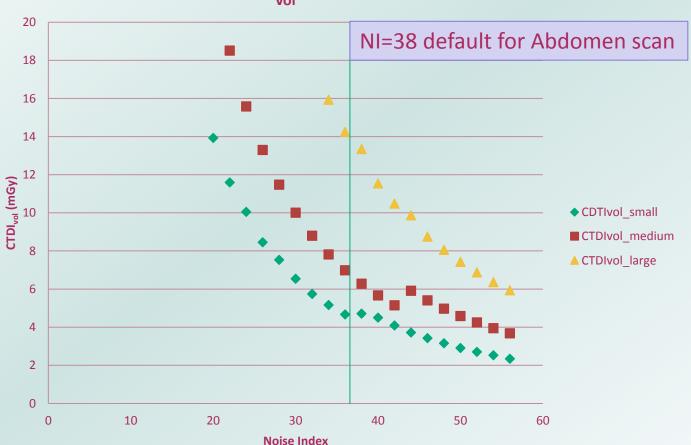
Percentage Difference between SSDE & CTDI_{vol} for D_w Patients >31cm <34cm (Large)

Dose Indices in Computed Tomography

- Study Outline
- Estimating Patient Diameter
- Calculating Diameter from CT images
- Size-Specific Dose Estimates
- Summary


Summary

- Patient diameter has been calculated using two methods for 823 Abdomen-Pelvis scans
- Size-Specific Dose Estimates have been calculated for each scan
- It was found that CTDI_{vol} misrepresents dose for the majority of patient size categories
- Obtaining patient diameter from SPRs possible
- Size-optimised CT protocols can be introduced


Work in progress ...

Developing Size-optimized Protocols

- Investigation of Noise Index levels for varying patient size
- Elliptical phantoms representing small, medium and large patients
- Catphan fits in centre
- Initial tests performed:
 CTDI_{vol} vs Noise Index

Developing Size-optimized Protocols

CTDI_{vol} vs Noise Index