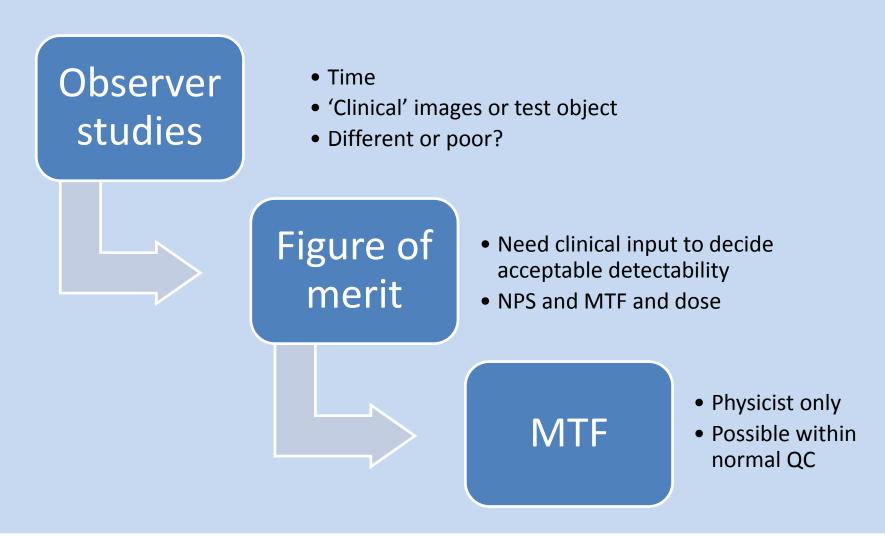


Factors affecting the task specific modulation transfer function in computed tomography

Naomi Clayton

Trainee Clinical Scientist


The problem

- Optimisation
 - The balance between image quality and dose
 - Particularly important in CT
- Image quality testing
 - But is image quality testing really representative of clinical image detectability?

A solution?

Schindera, 2013 Jaffe, 2007

University Hospitals Bristol NHS Foundation Trust

Factors affecting MTF in CT

- Iterative reconstruction
 - Different manufacturers have shown differences in MTF of between 0% and 12%
- Task specific contrast levels
 - Papers disagree on the effect on MTF

Christianson, 2015, Baker, 2012 Schindera, 2013 Verdun, 2015 Richard,2012 Wood, 2014

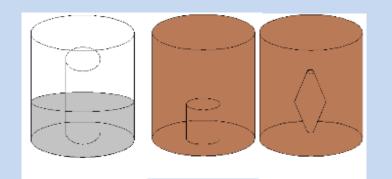
Project Aim

- Method of task specific MTF measurement
 - Manufacture of a suitable phantom
 - Development of analysis software
- Greater understanding of Siemens Somatom Definition AS+ algorithms used at UHBristol.

Phantom planning

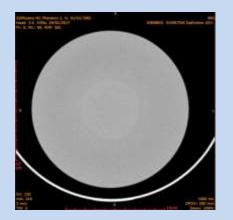
- MTF by circular edge method
 PMMA rods (120HU)
- Multiple contrast levels

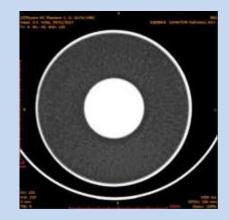
	Air	Axson F18 fast cast	DSM6060 Polyester	
	-1000HU	20HU	115HU	
\Rightarrow	1120HU	100HU	5HU	

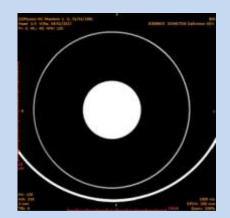

Inside CTDI phantom for "body"

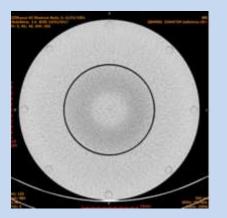
Richard, MedPhys 2012 Christianson, Radiology 2015 Friedman, MedPhys 2013

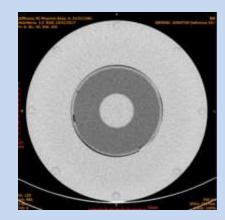
Phantom building

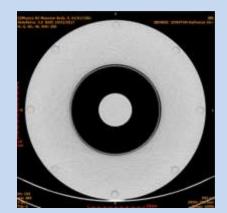








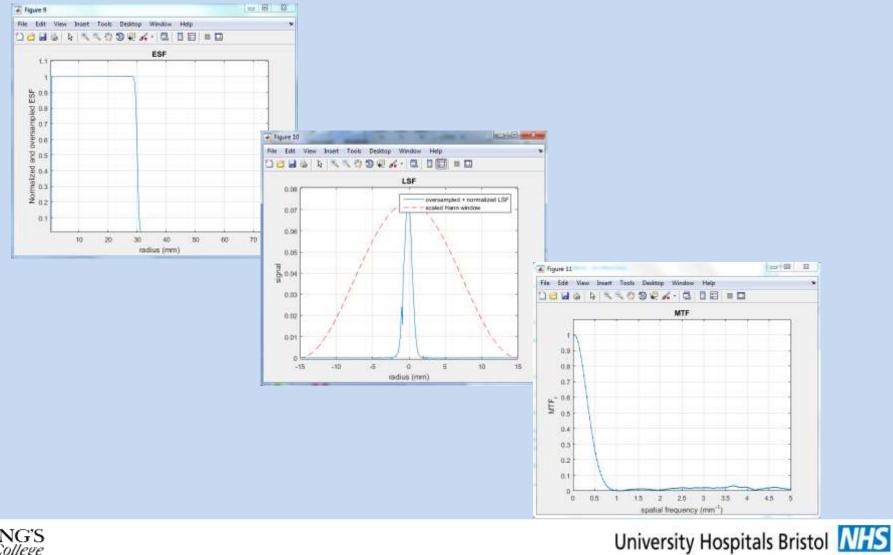

Imaging

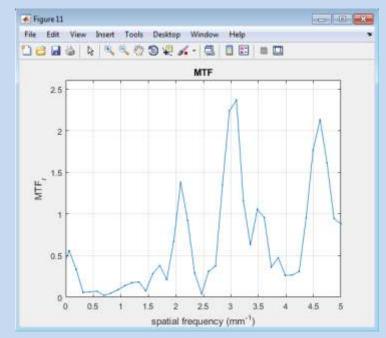


Code writing

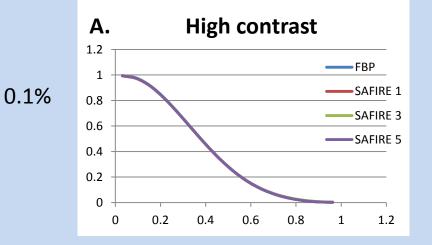
- Original MATLAB code published by Friedman et.al. MedPhys 2013
- Limitations to adapt
 - Used full ACR phantom edge with air
 - Need to be able to select region and remove artefacts/other details
 - Generates two text files with the axis and MTF data
 - Excel output for easier manipulation

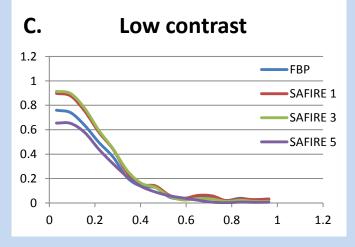
Friedman, 2013. A simple approach to measure computed tomography MTF and NPS using the ACR accreditation phantom. *Medical Physics*, 40(5).


MATLAB Code



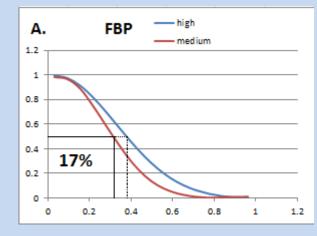
MATLAB Code

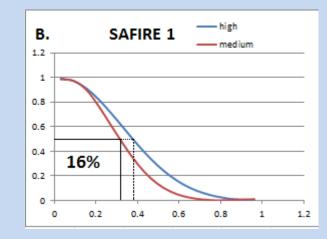

NHS Foundation Trust

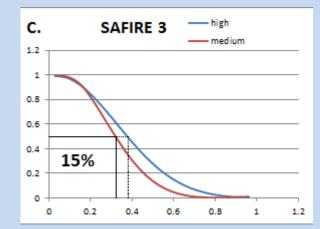


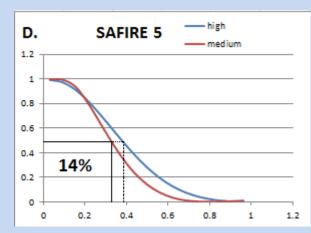
- Low contrast region too noisy unusable
- Very careful user region definition required
 - Any tiny artefacts/CATPHAN detail changes the peak in the LSF
- Removal of noisy tails of LSF required in med/low contrast regions
 - Leads to reduction in MTF through loss of data

Iterative Reconstruction Results

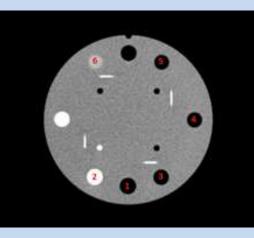

Medium contrast Β. 1.2 - FBP 3% 1 SAFIRE 1 0.8 SAFIRE 3 0.6 SAFIRE 5 0.4 0.2 0 0.2 0 0.4 0.6 0.8 1 1.2

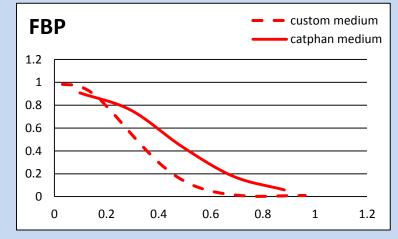

• Very little effect on MTF due to the use of iterative reconstruction




Detail contrast results

 The contrast of the detail used does affect the 0.5MTF by up to 17%





CATPHAN

Detail	Material	Expected	Measured	Contrast	Comparable to
number		CT no.	CT no.		custom phantom
1	Air	-1000	-994	1089	High (1120)
2	Teflon	990	910	815	
3	PMP	-200	-183	278	
4	LDPE	-100	-92	187	
5	Polystyrene	-35	-35	130	Medium (100)
6	PMMA	120	115	20	Low (5)

- Very different shape from custom phantom.
- Size of detail causing the drop from 1 at f=0.
 - Try decreasing the radius increment of calculation.

University Hospitals Bristol NHS

NHS Foundation Trust

Conclusions

- Phantom manufacture is very difficult!
- The Siemens Somatom iterative reconstruction algorithms did not affect MTF (across all contrasts tested)
- For the custom phantom there was a 17% difference in MTF (max) between high and medium contrast details (for FBP and IR)

Further work

- Look at other manufacturers scanners within UHBristol
 - No effect of iterative recon in Philips
 - Toshiba and GE to go
- Further discussion needed to find of ways to look at low contrast
 - Fillable phantom?
- Converting MATLAB code to ImageJ for wider use.

Thank you!

Naomi.Clayton@uhbristol.nhs.uk

References

- Friedman, 2013. A simple approach to measure computed tomography MTF and NPS using the ACR accreditation phantom. *Medical Physics*, 40(5).
- Friedman & Cunningham, 2008. Normalisation of the modulation transfer function: The open-field approach. *MedPhys*, 35(10).
- Christianson, 2015. An improved Index of Image Quality for task-based performance of CT iterative reconstruction across three commercial implementations. *Radiology*, 275(3).
- Edyvean, 2004. Comparison of CT scanner image noise, image width, dose and spatial resolution using standard test methods. Pittsburgh, AAPM.
- Richard, 2012. Towards task-based assessment of CT performance: System and object MTF across different reconstruction algorithms. *Medical Physics*, Issue 39.
- Schindera, 2013. Iterative reconstruction algorithm for CT: Can radiation dose be decreased while low contrast detectability in preserved? *Radiology*, 269(2), pp. 511-518.
- Baker, 2012. Contrast to noise ratio and low contrast object resolution on full and low dose MDCT:SAFIRE versus filtered back projection in a low contrast object phantom and in the liver. *AJR*, Volume 199, pp. 8-18.
- Jaffe, 2007. Radiation doses from small bowel follow through and abdominopelvic MDCT in Crohn's disease. *AJR*, 1022(195), p. 1015.

