Creating a craniosynostosis protocol

Pedrum Kamali-Zonouzi
Clinical Scientist
Royal Surrey County Hospital
Introduction

• Craniosynostosis is the premature fusion of the skull sutures.

• The resulting asymmetric calvarial (skullcap) growth causes characteristic cranial deformities.

• The clinical outcome varies between minor cosmetic deformity to severe head growth restriction with mental retardation and cranial palsies
Introduction

A & C: axial plane and a 3D image in a patient suffering from right sided coronal craniosynostosis.

B & D show axial plane and a 3D image in a patient suffering from left sided coronal craniosynostosis.
Introduction

• The overall goal is the early detection and characterisation to enable appropriate treatment.

• Delayed diagnosis and treatment may lead to:
 - deformity which may be difficult to correct
 - potentially irreversible neurological issues

• Specific imaging goals include detailed characterization of the number of sutures, extent of suture involvement, and complexity of 3D skullcap deformity.
CR-Xray Craniosynostosis protocol at RSCH

LAT and AP skull CR x-ray

Effective dose approximately 0.03mSv
GE VCT XT CT craniosynostosis protocol

Vazquez Castelo et al (2012)

100 patients
3 dose level groups
DLP range 40-281 mGy.cm

Effective dose 0.40-2.6 mSv

Dose conversion coefficient of 0.011mSv/mGy.cm

GE VCT XT CT craniosynostosis protocol

<table>
<thead>
<tr>
<th>Technical Parameters</th>
<th>Protocol Head Group 1</th>
<th>Protocol Craniosynostosis Group 2</th>
<th>Protocol Craniosynostosis Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube Voltage (kVp)</td>
<td>80/100/120</td>
<td>80/100</td>
<td>80</td>
</tr>
<tr>
<td>mA range</td>
<td>150-250</td>
<td>50-180</td>
<td>50-150</td>
</tr>
<tr>
<td>Noise Index</td>
<td>6.5</td>
<td>7.28</td>
<td>>7.28-23.22 ((\bar{X} = 18.6))</td>
</tr>
<tr>
<td>Length of study (cm)</td>
<td>12.7 ± 1.3</td>
<td>12.3 ± 1.6</td>
<td>12.6 ± 0.9</td>
</tr>
<tr>
<td>Number of images</td>
<td>204</td>
<td>197</td>
<td>202</td>
</tr>
<tr>
<td>FOV (cm)</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Total collimation width (mm)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Rotation time (s)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.984</td>
<td>0.984</td>
<td>0.984</td>
</tr>
<tr>
<td>Table feed per rotation</td>
<td>39.37</td>
<td>39.37</td>
<td>39.37</td>
</tr>
<tr>
<td>Table speed (mm)</td>
<td>98.4</td>
<td>98.4</td>
<td>98.4</td>
</tr>
<tr>
<td>Acquisition width (mm)</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Interval (mm)</td>
<td>0.625</td>
<td>0.625</td>
<td>0.625</td>
</tr>
<tr>
<td>Reconstruction algorithm</td>
<td>Soft tissue & bone</td>
<td>Soft tissue & bone</td>
<td>Soft tissue & bone</td>
</tr>
</tbody>
</table>
CT cranisynostosis protocol at RSCH

Low dose 3D reconstructed CT head scan 69.26 mGy.cm

Effective dose approximately 0.42 mSv or 1.87 mSv???
The total lifetime cancer risks are as follows:

- CR x-ray (0.03mSv) = 1 in 200,000
- CT (0.42mSv) = Kursheed et al (2002) 1 in 47,000
- CT (1.87mSv) Chappel et al, (2002) = 1 in 10,000.

- Natural childhood cancer risk = 1 in 500 (Stiller, 2007)
Discussions

• Given the effective dose using a CT scan is approximately 10-60 times greater than CR X-ray and that patients may require sedation should the use of CT be justified for craniosynostosis?

• Do other centres use CT for craniosynostosis imaging and if so how was this justified?

• What do other centres use to calculate effective dose/risk for paediatric CT imaging?
Discussions

Or

Or

Which one is correct ????????????????????
References

