Patient Dosimetry Audit for Establishing Local Diagnostic Reference Levels for Nuclear Medicine CT

CT Users Group Meeting
20th October 2016, Manchester Conference Centre

Ngonidzashe Michael Katsidzira
Matthew Gardner

RRPPS
University Hospitals Birmingham
NHS Foundation Trust
Contents

- Background
- Methods
- Results
- Discussions
- Conclusion
- Acknowledgements
- References

NB: This work will be submitted for publication imminently
Background

- Diagnostic Reference Levels (DRLs) provide a useful tool for monitoring patient doses
- It is a legislative requirement to establish Local DRLs (LDRLs) (UK\(^1\) and Europe\(^2\))
- DRLs (Local and National) are well established in diagnostic radiology but not a common practice in Nuclear Medicine (NM) CT
- NDRLs are available for NM in terms of administered activity\(^3\) (no information on CT component)
- Previous work has been carried out to establish DRL for PET/CT\(^4,5\)
Background (cont…)

Table 1: IPEM Working Party Proposed NDRLs\(^6\) for common NMCT examinations

<table>
<thead>
<tr>
<th>Examination Type</th>
<th>CT Purpose</th>
<th>Proposed NDRLs</th>
<th>CTDIvol (mGy)</th>
<th>DLP (mGycm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET half body</td>
<td>Localisation</td>
<td></td>
<td>4.3</td>
<td>400</td>
</tr>
<tr>
<td>Parathyroid</td>
<td>Localisation</td>
<td></td>
<td>5.6</td>
<td>170</td>
</tr>
<tr>
<td>Bone</td>
<td>Localisation</td>
<td></td>
<td>5.6</td>
<td>180</td>
</tr>
<tr>
<td>Octreotide/MIBG</td>
<td>Localisation</td>
<td></td>
<td>5.4</td>
<td>240</td>
</tr>
<tr>
<td>Thyroid post ablation</td>
<td>Localisation</td>
<td></td>
<td>5.9</td>
<td>210</td>
</tr>
<tr>
<td>SPECT/PET cardiac</td>
<td>Attenuation Correction</td>
<td></td>
<td>2.0</td>
<td>34</td>
</tr>
</tbody>
</table>
The aim of this work was to establish a system for NMCT in terms of

- patient dosimetry audit
- setting up LDRLs

Patient dosimetry for NMCT presented a number of difficulties which may not be encountered for diagnostic radiology CT
Background (cont…)

• For diagnostic radiology CT, data are divided according to body region only (e.g. Lumbar Spine)

• For NMCT, data were divided according to:
 ✓ examination type (e.g. Bone)
 ✓ body region
 ✓ dose modes

• Obtaining sufficient patient numbers proved challenging for NMCT due to the above data division
Background (cont…)

Table 2: CT dose modes developed for Nuclear Medicine at the Queen Elizabeth Hospital Birmingham

<table>
<thead>
<tr>
<th>Dose Mode</th>
<th>CT Purpose</th>
<th>kV</th>
<th>Quality Reference mAs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Attenuation Correction</td>
<td>130</td>
<td>10-16</td>
</tr>
<tr>
<td>Moderate</td>
<td>Localisation</td>
<td>130</td>
<td>40</td>
</tr>
<tr>
<td>Standard</td>
<td>Diagnostic CT</td>
<td>130</td>
<td>150</td>
</tr>
<tr>
<td>Metal</td>
<td>Patients with Orthopaedic Implants</td>
<td>130</td>
<td>330</td>
</tr>
</tbody>
</table>

*values are approximate as actual value depends on body region
Methods

• Data have been collected from examinations performed on
 ✓ Two SPECT/CT scanners (Siemens Symbia T16 and T)
 ✓ PET/CT scanner (Siemens Biograph mCT Flow)
• Data collection periods
 ✓ SPECT/CT (November 2014 to July 2016)
 ✓ PET/CT (April to August 2016)
• Examination data capture
 ✓ Computed Radiological Information System (CRIS)
 ✓ Paper records (manually recorded by NM Technologists)
Methods (cont…)

- CRIS downloads provided information on the
 - examination type
 - date of birth
 - date of examination
 - Dose Length Product (DLP)

- CRIS provided sufficient information to perform dose analysis for
 - PET/CT examinations
 - Cardiac SPECT/CT examinations

(as these are not associated with different dose modes and body regions)
Methods (cont..)

- The mean and standard deviation of DLPs for common NMCT examinations were then calculated.
- Data were subjectively assessed and any obvious outliers removed before analysis.
- Paediatric data were also identified and removed before analysis.
- Only examinations with 10, or more, patients were analysed.
- LDRLs will be set based on the mean DLP.
Methods (cont…)

• Paper records provided additional information for SPECT/CT (excluding Cardiac) examinations
 ✓ body region
 ✓ dose mode
 ✓ scanner

• The CRIS data and paper records were matched using the patient identification number and examination date found on both records

• For common SPECT/CT examinations, data were divided in terms of the
 examination type, body region, scanner and dose mode
Results

Table 3: Comparison between mean DLP and IPEM WP proposed NDRLs\(^6\) for Bone SPECT/CT examinations for different body regions and dose modes

<table>
<thead>
<tr>
<th>Examination Type</th>
<th>Body Region</th>
<th>Scanner</th>
<th>No. of Patients</th>
<th>Dose Mode</th>
<th>DLP (mGy cm)</th>
<th>Mean DLP</th>
<th>Standard Deviation</th>
<th>Proposed NDRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>Pelvis</td>
<td>T</td>
<td>15</td>
<td>Moderate</td>
<td>105</td>
<td>40</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>T-Spine</td>
<td>T</td>
<td>13</td>
<td>Moderate</td>
<td>133</td>
<td>40</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>T-Spine/L-Spine</td>
<td>T</td>
<td>15</td>
<td>Moderate</td>
<td>124</td>
<td>26</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>L-Spine</td>
<td>T</td>
<td>47</td>
<td>Moderate</td>
<td>107</td>
<td>33</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>L-Spine</td>
<td>T16</td>
<td>24</td>
<td>Moderate</td>
<td>170</td>
<td>70</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>L-Spine</td>
<td>T16</td>
<td>33</td>
<td>Standard</td>
<td>634</td>
<td>226</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>L-Spine</td>
<td>T16</td>
<td>11</td>
<td>Metal</td>
<td>1045</td>
<td>426</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Feet/Ankles</td>
<td>T</td>
<td>10</td>
<td>Standard</td>
<td>153</td>
<td>44</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Feet/Ankles</td>
<td>T16</td>
<td>32</td>
<td>Standard</td>
<td>221</td>
<td>39</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Pelvis</td>
<td>T16</td>
<td>11</td>
<td>Standard</td>
<td>558</td>
<td>111</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Pelvis</td>
<td>T16</td>
<td>34</td>
<td>Metal</td>
<td>1359</td>
<td>322</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Knees</td>
<td>T16</td>
<td>10</td>
<td>Standard</td>
<td>230</td>
<td>130</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Knees</td>
<td>T16</td>
<td>111</td>
<td>Metal</td>
<td>913</td>
<td>285</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>T-Spine/L-Spine</td>
<td>T16</td>
<td>24</td>
<td>Standard</td>
<td>704</td>
<td>306</td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

Moderate - Localisation, **Standard** - Diagnostic CT, **Metal** - Patient with orthopaedic implants
Results (cont..)

Table 4 : Comparison between mean DLP and proposed NDRLs for different examination types
body region and dose modes

Examination Type	Body Region	Scanner	No. of Patients	Dose Mode	DLP (mGy cm)		
------------------	---------------	---------	-----------------	-----------	--------------		
					Mean DLP	Standard Deviation	
					Proposed NDRLs		
Parathyroid	Neck	T	19	Moderate	66	20	170
	Neck	T16	42	Moderate	120	36	170
Octreotide	Abdomen	T16	15	Moderate	280	97	240
	Abdo/Pelvis	T16	14	Moderate	204	109	240
	Chest/Abdo/Pelvis	T16	32	Moderate	377	164	240
	Head/Chest/Abdo/Pelvis	T16	10	Moderate	373	151	240
Cardiac	Heart	T16	2889	Low	34	1	34
PET/CT	Whole/half body	PET	1192	Moderate	346	164	400*

*Based on half body scan

Low - Attenuation Correction, Moderate - Localisation
Results (cont..)

Figure 1: Mean Dose Length Product (DLP) data for Bone SPECT/CT Lumbar Spine examinations in the four dose modes.

![Bar chart showing mean DLP for different dose modes with number of patients indicated for each mode.](chart.png)
Discussion

• The proposed NDRLs\(^6\) specify the examination type and the scan purpose, but the details of the body region are not given

• Only Octreotide scans have mean DLP greater than the proposed NDRL

 ✓ low numbers, patient height/weight

• T16 scanner tends to give higher DLPs than the T scanner

 ✓ further optimisation of doses required

 ✓ technology difference (relative tube capabilities and detector sizes)

• **Figure 1** clearly shows the importance of dividing the data according to dose mode

• Mean DLP PET/CT (half and whole body) was less than proposed NDRLs\(^6\) (based on the half body only)
Conclusion

- Patient dosimetry for NMCT presents a number of difficulties which may not be encountered for Diagnostic Radiology CT
 - Dependence on paper records (CRIS does not provide all information)
 - Limited number of examinations available due to frequency of examinations and division of data
- Further improvements are planned to capture more data electronically through the CRIS system
- This system provides a useful basis for setting up LDRLs and hence a baseline for attempts at optimisation of NMCT doses
References

Acknowledgements

- Erin Ross, Principal Physicist, Nuclear Medicine Department
- Elizabeth Larkin, Consultant Clinical Scientist, RRPPS
- Nuclear Medicine technologists at QEHB (particularly Samantha Holt and Kenneth Parker)
- Sophie Bissel, Trainee Clinical Scientist, Nuclear Medicine Department
Thank you for your attention
Any Questions?

NB: This work will be submitted for publication imminently

Contact Information

Ngonidzashe Michael Katsidzira
NgonidzasheMichael.Katsidzira@uhb.nhs.uk

Matthew Gardner
Matthew.Gardner@uhb.nhs.uk