Noise Power Spectrum in CT

Anne Hill
University Hospitals Bristol
CTUG 15-12-15

Why measure?

 Appearance of 2 images may be very different, even though the standard deviations are identical

- SNR does not completely characterise the noise
- Noise texture important too i.e. the spatial frequency distribution of the noise
- NPS gives a more complete description of noise than standard deviation – describes noise variance as a function of spatial frequency, therefore characterising noise texture

Calculating the NPS

- Starting with trying to calculate the NPS for a series of images
- Following methodology described in:

Journal of the ICRU Vol 12 No 1 (2012) Report 87

- Acquired series of helical images using a homogeneous Px phantom
- Written an analysis tree in IQWorks to calculate the average NPS for ROIs positioned at a constant radius within one image

Next step

- In CT, there is a cupping artefact, i.e. HU units near the centre of the image of a homogeneous object are lower than those nearer the periphery
- Caused by e.g. beam hardening and scattered radiation
- This can cause a spike at low frequencies in the NPS

To reduce the impact of cupping on the NPS

- One way of eliminating the spike is to acquire images for two helical runs of the same length of a homogeneous phantom, then subtract one data set from the other
- Also subtracts out any non-uniformity in the images due to inhomogeneities in the phantom, i.e. only the noise remains
- I would then calculate the average NPS over each of the ROIs in each of the difference images

The problem – when using IQWorks

- I can load a pair of images and subtract one from the other (using Maths – Process – Difference Image)
- I can load a series of images
- But I can't read in 2 series of images and subtract each image in set 2 from the corresponding image in set 1

IQWorks - development

- Andrew Reilly looking at 2 things:
 - Modifying IQWorks so that it can handle the 2 image sets
 - Automating generating the layout of over-lapping regions of interest

Another question

- The reference
 Journal of the ICRU Vol 12 No 1 (2012) Report 87
 suggests that we should be extending to doing this in 3D
- This is for systems where the raw data is acquired by many detector arrays simultaneously in the z-direction. i.e. volume scans, cone beam. Thus giving rise to noise correlation in z
- Extension to equations –not yet available in IQWorks
- How to do this?????

So why useful?

- To assess noise fully
- Could use to compare protocols (including selection of reconstruction filter) for CT scanners from different manufacturers
- i.e. could match recon filters for the different manufacturers
- Could use to compare noise versus dose for different scanner models (if keep dose delivered constant for all)
- Will supplant the use of visual assessment of lowcontrast test phantoms at acceptance/routine QA