Validation of a large scale audit technique for CT dose optimisation

Dr Tim Wood
Castle Hill Hospital, Cottingham
www.hullrad.org.uk

13th CT Users Group
5th October 2011
Overview

• Introduction
 – RIS, dose audits and DRLs
• Method
 – Dosalyzer© and data filtering
 – The 3rd UK CT Survey
• Results & Discussion
 – A comparison of the large scale audit with the 3rd UK CT Survey data
• Dosalyzer© in action – a practical example
 – CT Head optimisation (Toshiba Aquillion 64 slice)
• Conclusions
Introduction

• It is a requirement of IR(ME)R that we perform dose audits for the purposes of optimisation and checking protocols against DRLs (national and local).

• The traditional ‘paper-based’ audit exercise is time-consuming and very limited in scope (~20 standard (70 kg) patients per room per examination).

• The Radiology Information System (RIS) should contain dose information already – so why not use this?

• Is this sounding familiar?...
Large Scale CT Dose Audit Through Radiology Information Systems (RIS)

P Charnock¹, A Pike¹

¹ Integrated Radiological Services Limited, Liverpool, England

Paul Charnock - Scientific Officer, IRS ltd
CT Users Group Meeting, Hammersmith Hospital, London. October 2010
Patient dose audit using RIS data

- In principle there are many advantages to using the RIS data for patient dose audit
 - Much bigger sample size (e.g. 3400 head CT scans from RIS compared with 20 for the 3rd UK CT Survey)
 - Lessens the burden on often very busy CT departments
 - Much quicker and easier to analyse data
 - Allows routine and long-term monitoring of patient dose and CT protocol changes
 - Readily available local dose data, including the rarer examination types e.g. IR(ME)R incidents, ethics, etc.
The concerns…

• As was raised at last year's meeting, there are potential problems:
 – Incorrect data entry
 – Zeroes and blank entries
 – Multiple exposures assigned to a single exam (linked to zeroes and blanks)
 – Non-standard practice
 – ‘Abnormal’ patients e.g. bariatric

• The results of the dose audit will only be as good as the quality of the data that goes into it!
The ‘Hull’ solution – Data entry

• Talk to the Radiographers
 – Establish what the problems are with data entry, and come up with mutually agreeable solutions
 – Establish what the examination names mean e.g. what’s the difference between a CT chest and a CT chest with contrast? Are they all unique?

• Simple adaptations to the RIS (Radcentre)
 – Flags were added to identify multiple and ‘abnormal’ exposures e.g. non-standard practice, bariatric patients, etc

• Training, training & training
 – Make sure all Radiographers know how important it is to enter data correctly, and when to use the multiple/abnormal flags
The ‘Hull’ solution - Dosalyzer©

- Data is extracted from the RIS in .csv format and uploaded onto a central database every month
- Individual systems, date ranges, examination types (codes) and age groups can be analysed
- Filters can be applied to the data to remove blanks, zeroes and multiple/abnormal exposures (as identified by the Radiographers)
- An additional ‘outlier’ filter can also be applied using sliders on the dose distribution to set the limits for analysis (exclude anything ridiculous)
- Summary dose statistics are then produced, which are exported to Excel for further analysis
DRL Dosalyzer

Analysis Dates
- From: 01 Jul 2010
- To: 31 Jul 2011

Analysis Options
- Site: HRI (KCT)
- Room: HRI CT RM1
- Exam: CT CHEST WITH CONTRAST
- Age Range: 16 to 100

Select Filters
- Remove 0
- Remove Blanks
- Remove Abnormal Exposures
- Remove Outliers

View Analysis Results
- Min Samples: 1

<table>
<thead>
<tr>
<th>ExamName</th>
<th>RoomName</th>
<th>ExamMonth</th>
<th>NumSamples</th>
<th>NDRL</th>
<th>AverageD (Gy/cm²)</th>
<th>MedianD (Gy/cm²)</th>
<th>SEM</th>
<th>MinDose (Gy/cm²)</th>
<th>MaxDose (Gy/cm²)</th>
<th>Standard</th>
<th>Quartiles</th>
<th>Quartiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>January</td>
<td>51</td>
<td>80</td>
<td>634.91</td>
<td>574.00</td>
<td>70.07</td>
<td>305.00</td>
<td>2431.00</td>
<td>500.41</td>
<td>470.00</td>
<td>1022.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>February</td>
<td>48</td>
<td>80</td>
<td>663.51</td>
<td>729.00</td>
<td>70.85</td>
<td>290.00</td>
<td>2172.00</td>
<td>459.96</td>
<td>528.00</td>
<td>1019.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>March</td>
<td>76</td>
<td>80</td>
<td>692.50</td>
<td>710.00</td>
<td>60.36</td>
<td>160.00</td>
<td>2873.00</td>
<td>526.17</td>
<td>538.00</td>
<td>1181.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>April</td>
<td>48</td>
<td>80</td>
<td>671.54</td>
<td>641.50</td>
<td>77.50</td>
<td>296.00</td>
<td>2539.00</td>
<td>536.93</td>
<td>486.00</td>
<td>1132.80</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>May</td>
<td>49</td>
<td>80</td>
<td>659.42</td>
<td>701.00</td>
<td>73.69</td>
<td>223.00</td>
<td>2924.00</td>
<td>515.83</td>
<td>460.00</td>
<td>1052.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>June</td>
<td>50</td>
<td>80</td>
<td>954.90</td>
<td>787.50</td>
<td>87.88</td>
<td>116.00</td>
<td>2914.00</td>
<td>521.41</td>
<td>579.00</td>
<td>1248.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>July</td>
<td>39</td>
<td>80</td>
<td>1020.55</td>
<td>788.00</td>
<td>113.20</td>
<td>331.00</td>
<td>3410.00</td>
<td>707.47</td>
<td>582.00</td>
<td>1170.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>August</td>
<td>23</td>
<td>80</td>
<td>1006.91</td>
<td>822.00</td>
<td>106.94</td>
<td>422.00</td>
<td>2096.00</td>
<td>512.86</td>
<td>622.00</td>
<td>1277.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>September</td>
<td>51</td>
<td>80</td>
<td>1014.22</td>
<td>759.00</td>
<td>88.49</td>
<td>240.00</td>
<td>2891.00</td>
<td>631.98</td>
<td>577.00</td>
<td>1299.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>October</td>
<td>36</td>
<td>80</td>
<td>664.31</td>
<td>695.50</td>
<td>70.30</td>
<td>337.00</td>
<td>1852.00</td>
<td>433.37</td>
<td>458.00</td>
<td>1324.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>November</td>
<td>47</td>
<td>80</td>
<td>652.85</td>
<td>817.00</td>
<td>62.53</td>
<td>260.00</td>
<td>1901.00</td>
<td>428.66</td>
<td>596.00</td>
<td>1309.00</td>
</tr>
<tr>
<td>CT CHEST WITH CONTRAST</td>
<td>HRI CT RM1</td>
<td>December</td>
<td>33</td>
<td>80</td>
<td>608.45</td>
<td>705.00</td>
<td>73.71</td>
<td>286.70</td>
<td>2098.00</td>
<td>434.90</td>
<td>463.00</td>
<td>1115.00</td>
</tr>
</tbody>
</table>
Method - Dosalyzer©

• Summary dose statistics were generated for CT heads, chests, hi-res chests, CTPAs, abdo/pelvis, C-spines and virtual colonoscopies for up to four CT scanners (three Philips, one Toshiba)
• 6 month period between July 2010 and December 2010
• Only adult exposures considered (age range set between 16 and 150)
• All blanks, zeroes and multiple/abnormal exposures were filtered out of the data set
Method – 3rd UK CT Survey

- This data was taken as the ‘gold-standard’
 - It will be the basis for future revisions of national DRLs?
- Data was acquired for 20 patients per examination per room
- The data collection was complete in just a few days for the most frequent exams (very much a snap-shot of doses compared with Dosalyzer©), and up to a month for the less frequent
- Mean DLPs and SEMs determined from data
- The patient dimensions of the patients in this study suggested no particularly large or small patients were included (standard patient?)
Results – CT Head

- Large scale RIS audit - mean dose
- 3rd UK CT Survey method (Hull data)
- NDRL (2003)

<table>
<thead>
<tr>
<th>Room</th>
<th>DLP (mGy.cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHH CT RM1</td>
<td></td>
</tr>
<tr>
<td>CHH CT RM2</td>
<td></td>
</tr>
<tr>
<td>HRI CT RM1</td>
<td></td>
</tr>
<tr>
<td>HRI CT RM2</td>
<td></td>
</tr>
</tbody>
</table>

Hull and East Yorkshire Hospitals
NHS Trust
Results

• Overall, good level of agreement between RIS audit and 3rd UK CT survey data for all examinations considered
 – Generally (but not always) agree within the limits of the error bars ($2 \times \text{SEM}$)

• Encouraging given the difference in sample size (3400 c.f. 20) and date range
 – Month-to-month variations can be quite significant…
Month-to-month variations
CT chest with contrast

- CHH CT RM1
- CHH CT RM2
- HRI CT RM1
- HRI CT RM2

DLP (mGy cm)

July
August
September
October
November
December

Month
Month-to-month variations

- **HRI CT RM1**
 - November = 920 mGy cm (N = 47)
 - December = 710 mGy cm (N = 30)

- Whilst not necessarily statistically significant (large error bars), these variations may result in unrepresentative doses being determined.

- This may be particularly problematic when setting local DRLs.

- However, one trend that has been noted is that the mean dose from RIS is almost always higher than that determined from the 3rd UK CT Survey…
RIS dose distributions

- The dose histograms generated from the RIS data are clearly asymmetric, with an appreciable ‘tail’ extending to the high dose region
 - Due to larger/obese and/or tall (longer scan length) patients i.e. not standard patient
- Hence, the mean dose is skewed to higher values…
Mean versus median dose
All examinations

- Mean
- Linear (Mean)
- Median
- Linear (Median)

y = 1.08x
R² = 0.88

y = 0.99x
R² = 0.89
Mean versus median dose

• On average, the **mean** dose is 8% higher than that determined from the 3rd UK CT Survey

• The **median** dose is a much better indicator of standard patient dose (on average 1% lower)
 – It will more closely match the peak of the dose distributions and is not skewed significantly by the long high dose ‘tail’

• Only one point does not agree with the 3rd UK CT survey data when the error bars are considered
Dose reporting using RIS data

• The following process is being implemented within the Hull and East Yorkshire Hospitals Trust for routine (quarterly) dose audits:
 – The mean dose is reported as an indicator of overall population dose. This will include obese/tall patients (i.e. non-standard)
 – The median dose is reported to indicate the dose to the ‘standard’ patient, and for comparison with DRLs
 – Local DRLs will be set as the mean of the room median doses (i.e. not mean of the room means)
Dosalyzer© in action
A practical example

• CT head exposures on Toshiba scanner above NDRL
 – Median DLP = 1163 ± 11 mGy cm c.f. 930 mGy cm
• Helical protocol using SureExposure AEC system
• Adjusted the noise standard deviation from 2.0 to 2.3
 – Expected ~30% reduction in dose, with a ~15% increase in noise
Dosalyzer© in action

A practical example

Noise standard deviation changed second week in March
Dosalyzer© in action

A practical example

• For the three months following adjustment, consistent dose of 870 mGy cm (now easily below the NDRL)

• 25% dose reduction with no concerns raised over image quality

• Further reductions possible?...
Conclusions

• RIS data can be used for CT dose audits
• It is particularly efficient compared with the ‘traditional’ technique, and allows more routine and long term monitoring of patient doses
• However, caution must be taken to not remove the role of the Radiographer completely
 – As IR(ME)R operators, they have a responsibility to ensure all exposures are optimised
 – They may identify clinical issues that are not obvious from the data present in the RIS system
 – The extra information they *may* provide can reveal more about clinical protocols
 • Individual doses for multiple sequence exams e.g. CT chest c.f. CT chest with contrast
Acknowledgements

• The CT Radiographers at Castle Hill Hospital and Hull Royal Infirmary for collecting the 3rd UK CT Survey data
• Sandhya Pisharody, Oncology Information Systems Group, Castle Hill Hospital, for development of the Dosalyzer© software