Iterative reconstruction on Siemens CT scanners: noise, noise power spectrum, spatial resolution and low contrast detectability

Nick Keat, imanova ltd (formerly GSK Clinical Imaging Centre) Hammersmith Hospital

Eugenia Kulama, Imperial College NHS Trust

Outline

- Iterative reconstruction (IR) in CT
- Siemens IRIS and SAFIRE
- Testing methods
- Analysis
- Results
- Conclusion

Iterative reconstruction in CT

- Available now from more than one vendor
 - IRIS / SAFIRE (Siemens), ASIR / Veo (GE), iDose (Philips), AIDR (Toshiba)
 - Complementary to analytic method (FBP)
 - Can be implemented in range of ways
- Potential for
 - Noise reduction
 - Artefact reduction
 - Increased spatial resolution
- Downsides...
 - Huge computational cost
 - Practicality for clinical workflow?
 - Non linearity
 - Potential object dependent shift in CT numbers?

CT iterative reconstruction

- Familiar from nuclear medicine
 - 1. Acquire raw data
 - 2. Generate initial image (FBP)
 - 3. Forward project
 - 4. Calculate difference
 - 5. FBP for correction image
 - 6. Apply image regularization
 - 7. Correct image or raw data
 - 8. Repeat 3-8 as necessary
- Devil is in the detail and sophistication of implementation!

Siemens iterative CT: IRIS and SAFIRE

- IRIS Iterative Reconstruction in Image Space
- SAFIRE Sinogram AFfirmed Iterative REconstruction
- Specifics hard to discern in available literature!
- IRIS
 - All iteration done in image space (no projection to sinogram space)
 - Employ image regularisation to control noise
- SAFIRE
 - Employs forward projection and regularisation techniques
 - Potential for artefact reduction through 3D projection
- How they're used
 - Tick box to turn on, switch from Bxx -> Ixx or Hxx -> Jxx kernel
 - SAFIRE strength can be varied from 1-5

Testing methodology

- Look at image characteristics with and without IR
- Use clinical protocols and relevant phantoms
- Assess IQ metrics in same location where possible
 - Noise
 - Noise power spectrum (NPS)
 - Spatial Resolution
 - Also low contrast detectability (LCD) in Catphan
- Examine effect of acquisition and recon parameters on IQ for IR

Equipment

- Siemens Definition AS+ 128 with IRIS
- Siemens Definition AS 64 with SAFIRE
- Head and body water filled Perspex phantoms
- 100 mm Ø solid water insert, with 100 μm nickel wire

Scanning

• Standard abdomen and head protocols and variants

	Body	Head	
Energy (kV)	120	120	
Exposure (mAs)	210 and x 0.5, x 0.25 etc	410 / 370 and x 0.5, x 0.25 etc	
t _{rot} (s)	0.5	1.0	
pitch	0.6	0.55	
data (mm)	128 / 64 x 0.6	128 / 64 x 0.6	

• = Both scanners, • = IRIS, • = SAFIRE

Analysis

- Phantom centred, wire ~20 mm off centre, recon centred on wire
- All IQ analysis in same location (within 25 mm of wire)
 - Minimise spatial variation of IQ
- Noise: SD of annulus around wire
 inner Ø 10 mm, outer Ø 50 mm
- NPS: 21 x 21 mm region over wire
- Resolution: MTF of wire
- LCD: visual scoring of 3 and 5 HU details on Catphan
 - Contrast of 3, 5 and 10 HU details measured
- Results designed to be compared, not absolute

NPS analysis

- NPS calculated in ROI over wire
- Generate mean of 20 images over wire
- Subtract mean to remove wire
- Zero pad region to 3 x the size
- FFT for NPS, then take mean over 20 images
- Results compare well to those from uniform region

Results: noise (1)

• SD_{IR On} / SD_{IR Off} at standard protocols

	IRIS	SAFIRE*			
Body	0.70	0.71			
Head	0.91	0.68			
* SAFIRE level 3 is standard in this study					

- Same ratio at 1/2 , 1/4 , or 1/8 mAs
- Sharper kernel -> more noise reduction
 - e.g. ${\rm SD}_{\rm IR \ On} \, / \, {\rm SD}_{\rm IR \ Off} \,$ for IRIS head

Kernel	Ratio SD _{Jxx} / SD _{Hxx}
J30 / H30	0.91
J45 / H45	0.80
J70 / H70	0.61

Results: noise (2)

- Main dependent variable is RFOV
- SAFIRE strength also affects noise ratio

Results: NPS (1)

Results: NPS (2)

• NPS effect with kernel, and std deviation values (IRIS head)

Results: resolution (1)

Results: resolution (1)

• Effect of FOV and kernel (IRIS head)

Results: LCD

• Early results from IRIS LCD testing – 2 observers, 1 dose level

Conclusions

- Siemens' IR algorithms reduce image noise relative to FBP
 - Seen in standard deviation and noise power spectrum
 - Effect independent of mA
 - Effect greater at large RFOV
 - Effect greater for higher SAFIRE strength
- This is achieved without loss of spatial resolution
- Little effect seen in early Catphan results
 - IRIS results only so far
 - Needs more observers / range of exposure conditions

Thanks:

- CT department, Hammersmith Hospital
 - IRIS scanning
- CT department, Chelsea and Westminster Hospital
 - SAFIRE scanning
- ImPACT for loan of wire phantom

Image noise, IR_{on} / IR_{off}

	IRIS body	IRIS head	SAFIRE body	SAFIRE head
Std	0.70	0.91	0.71	0.68
mAs ~ x 1/2	0.70	0.92	0.71	0.70
mAs ~ x 1/4	0.72	0.90	0.71	0.70
B70 or H70 kernel	0.59	0.61	0.65	0.62
50 mm RFOV	0.96	1.06	0.93	0.99
100 mm RFOV	0.84	1.02	0.78	0.90
200 mm RFOV	0.70	0.91	0.68	0.68
350/300 mm RFOV	0.70	0.94	0.71	0.35
500 mm RFOV	0.66		0.65	