

CT Helical Head Scanning

Katherine Dewis Matilda Nyekiova, John Crossman and Peter McGookin

> Radiation Protection Group, Medical Physics Royal Berkshire Hospital

How we got involved?

- New Consultant Radiologist
- CT Helical heads scans at previous hospital
- Sagittal and Coronal reconstructions for trauma head imaging
- A protocol was set up on the scanner
- A number of patients were imaged
- Radiologist wanted doses for a talk he was giving to a Clinical Governance meeting in Radiology

Helical Head – Initial Assessment

- Current Sequential Head
 - Local DRL DLP =963 mGycm
 - Local Dose = 2.3 mSv
- Helical DLP values from 8 patients
 - Range of DLP values 1343 3238 mGycm
 - Average DLP of 2519 mGycm
 - Average Effective Dose 5.6 mSv (Range 3.0 7.8 mSv)
- National DRL for 'Routine Head' 930 mGycm

Royal Berkshire NHS Foundation Trust

Scan Parameters

Scan Type	Axial		Helical		
Rotation Time (s)	1	1	0.5		
Slice Width (mm)	5	5	0.625 (20 Collimation)		
Pitch	N/A	N/A	0.531		
kV	140	120	140		
mA	Smart	Smart	Smart		
Min mA			100		
Max mA	330	330	635		
Noise Index	2.8	2.8	3.0		
Total Time	2	5	8.06		

Tube Current Modulation – Noise Index

- Tube Current Modulation is the Automatic Exposure Control for CT
- Modulates the tube current as the scan happens
- For Axial Scans:

Noise Index = 2.8 Max mA = 330 (330mAs per rotation)

- For RANDO phantom the mA range was 204 330
- For Helical Scans:

Noise Index = 3 Max mA = 650mA (325mAs per rotation)

- For RANDO phantom 650mA was used for the whole scan
- Actually getting a Noise Index close to 5

Conclusions

- The helical head protocols have not been optimised
- Contacted a neighbouring hospital who have the same scanner
- Their LDRL for helical head scans was 1100 mGycm (compared with 2500 mGycm)
- They use a lower kV (120) and a higher noise index (7.06)
- This protocol was used to scan the RANDO phantom
- Additionally we varied other parameters for our helical protocol and scanned the RANDO phantom.
- The doses were calculated for each scan and the image quality assessed

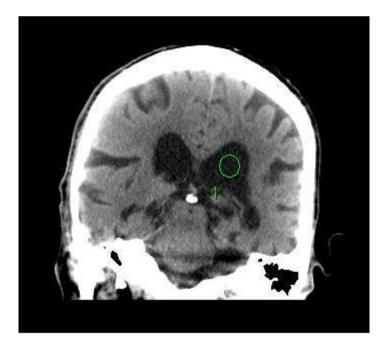
Effective Dose – For RANDO phantom

Protocol	Current Helical	Other Hospital Protocol	Current but 120kV	Current but Noise Index 6	Current but Noise Index 9	Current but pitch 0.969	Current with pitch 0.969 Noise Index 6
DLP (mGycm)	2659	1012	1903	1560	721	1578	952
Dose (mSv)	5.9	2.6	4.8	3.5	1.6	3.5	2.1
Dose Reduction		56%	19%	41%	73%	41%	64%

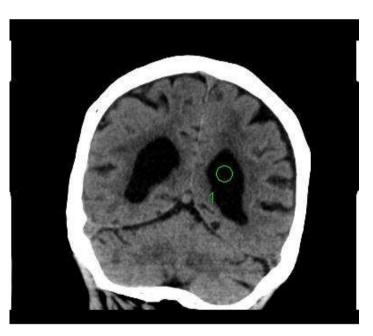
Current Sequential scanning Dose is 2.3 mSv

Image Quality

- Assessment of image quality was made from a 'Physics' point of view
- ROI place on axial, coronal and sagittal reconstructions
- ROI place in a uniform region of within the phantom with no bony structures or air gaps
- Noise
 - Standard Deviation of CT Number


Image Noise – Comparison with current helical protocol

	Current Helical	Other Hospitals Protocol	Change in kV	Change in Noise Index to 6	Change in Noise Index to 9	Change in Pitch	Change in Pitch and Noise Index
Axial	2.4	2.8	3.2	3.1	4.3	3.7	3.9
Coronal	2.7	3.9	2.3	2.9	4.2	3.2	4.0
Sagittal	2.6	3.0	2.6	2.7	3.4	2.6	3.8
DLP	2686	1026	1923	1585	728	1578	952



What does this mean clinically?

Two patient with average DLP ~1400mGycm ~ 3.5mSv

 Two patient with average DLP ~3000mGycm ~ 6mSv

SD = 1.4 10

SD = 2.0

What Happen Next?

- Work was presented at Clinical Governance Meeting in Radiology
- Our recommendations
 - Current Helical Protocol is not optimised
 - Therefore do not use
 - Could use reconstructed images from current sequential scan
 - Contact GE applications for further help in optimising scan protocol
 - Radiologist to visit the other hospital to examine patient images with regards to image quality

New Protocol Implementation

- New protocol based on neighbouring hospital
- 15 Patients
- DLP = 914mGycm
- Dose ~ 2.2mSv
- Radiologist opinion
 - Clinically acceptable image quality

Other Hospitals

– One other scanner doing CT helical heads

- Siemens Somotom Definition AS Plus - 128 slices

- DLP = 968 mGycm
- Dose ~ 2.2mSv

Conclusions

- Helical CT head doses have reduced from 5.9mSv to 2.3mSv
 - Main factor was another hospital with a lower dose clinical protocol
- Radiologist have been involved in work
 - Highlight importance of not just setting up protocols and scanning patients
- Raised at RPC meeting
 - Highlight the importance of data and information getting to Medical Physics
- CT Users group for radiographers
 - Local hospitals covered by Medical Physics
 - Share problems, protocols and DRLs
- Highlights importance of Medical Physics involvement in CT

Acknowledgements

- Katherine Dewis, Matilda Nyekiova and John Crossman
- Radiographers
 - Hilary Dent and Colleagues
- Radiologist
 - Dr Shezad Hussain
- Steve Mutch
 - Oxford Medical Physics