CT Dose calculations for individual patients – what you should know

Elly Castellano
Does this put you off?

![General Information]

1) This program is not suited to calculate dose for individual patients.
2) All calculations are based on standard patient data (ADAM, EVA, CHILD, BABY).
3) `<Scanrange> <Adult> or <Child-Baby>` may be used to indicate the scan range graphically.
4) A short description of the program can be found under `<Help>`!

Individual calculations are not possible!
Objective

• how accurately can ImPACT CT dose calculator and CT-Expo calculate individual patient effective dose (ICRP 60)?
The patient, the code and the error

- modified Zubal voxelised adult phantom
 - breasts and ovaries added
 - all radiosensitive organs included
 - variable dimensions
The patient, the code and the error

- RMH-Linköping Monte Carlo model
 - SSCT and MSCT scanners
 - geometry, spectrum, beam shaping filter, couch (OFF)
 - axial or helical scanning
- validated against experiment
 - < 10 %
How does RMH-Link compare against NRPB and GSF?

- two scanner models: HiSpeed CT/i SSCT and LightSpeed 16 MSCT
- whole body irradiation
- compared against ImPACT calculator and scaled CT-Expo

HiSpeed CT/i

- differences due to organ modelling
- similar results for LightSpeed 16
- effective doses agree to within 7 %
How do I set the scan range?

- four strategies
 - anatomical landmarks
 - scan range
 - fractions of irradiated organs
 - NRPB technique
- which one?
- simulate
 - brain, thorax, abdomen, pelvis scans
 - one scanner: HiSpeed CT/i
How do I set the scan range?

- effective doses for male phantom
 - similar results for female and hermaphrodite phantom
- matching fraction of irradiated organs most accurate
 - agreement within 20 %
How do I set the scan range?

<table>
<thead>
<tr>
<th>scan</th>
<th>landmarks</th>
<th>start cm</th>
<th>end cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>brain</td>
<td>base of skull to vertex</td>
<td>81</td>
<td>93</td>
</tr>
<tr>
<td>thorax</td>
<td>lung apices to bases</td>
<td>36</td>
<td>68</td>
</tr>
<tr>
<td>abdomen</td>
<td>dome of diaphragm to iliac crest</td>
<td>17</td>
<td>47</td>
</tr>
<tr>
<td>pelvis</td>
<td>iliac crest to symphysis pubis</td>
<td>-1</td>
<td>17</td>
</tr>
</tbody>
</table>
Do I need to allow for helical over-ranging?

• measure over-range
 • from total exposure time and scan parameters
• add over-range to scan range
• simulate
 – one scanner: LightSpeed 16
 – brain, thorax, abdomen, pelvis scans
 – helical mode with varying pitch
 – axial mode without over-ranging
 • equivalent to dose calculators
Do I need to allow for helical over-ranging?

- **helical v axial comparison**
 - 4 to 13 % discrepancy
 - depends on radiosensitivity of boundary organs

RMH-Link model only
Do I need to allow for helical over-ranging?

- comparison with MC calculators
 - agreement better than 20% for thorax, abdomen and pelvis scans

![Graph showing comparison between E using commercial package and E using RMH-Link CT model](image)

- abdomen scan

CTUG 2010
Do I need to adjust for patient size?

- **simulate**
 - three phantoms
 - 50, 70 and 90 kg
 - one scanner
 - HiSpeed CT/i
 - brain, thorax, abdomen, pelvis scans
 - axial scanning
 - fixed exposure parameters
Do I need to adjust for patient size?

- effective dose increases in smaller patients
- 13% change in effective dose for 30% change in weight

<table>
<thead>
<tr>
<th>scan</th>
<th>effective dose ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 kg</td>
</tr>
<tr>
<td>brain*</td>
<td>0.99</td>
</tr>
<tr>
<td>thorax</td>
<td>1.13</td>
</tr>
<tr>
<td>abdomen</td>
<td>1.10</td>
</tr>
<tr>
<td>pelvis</td>
<td>1.13</td>
</tr>
</tbody>
</table>

* scaled separately
And what about mA modulation?

- retrospective patient dose survey
- 30 patients
- TAP protocol
 - 120 kV, 20 mm collimation, 1.375 pitch, 7.5/7.5 mm slices
- data collection
 - mA, scan range from images
 - DLP from patient log book
And what about mA modulation?

- individualised effective dose calculation
- RMH-Link MC model
 - resize voxel phantom to each patient
 - assume scan range set on landmarks consistently
 - include helical over-ranging
 - calculate conversion factor per rotation
 - estimate average mAs per rotation
 - from images
 - scale conversion factor by mAs per rotation
 - sum contribution from all rotations
And what about mA modulation?

- best approach with the ImPACT dose calculator
 - Cristy phantom divided into anatomical regions:
 - 7 regions: shoulders, lungs, lung / liver overlap, liver, bowel, pelvis, femora
 - 3 regions: thorax, abdomen, pelvis
 - 1 region: torso
 - conversion factors calculated for each region
 - average mAs estimated for each region
 - from images
 - average mAs estimated from DLP
 - effective dose corrected for patient size
And what about mA modulation?

- ImPACT dose calculator overestimates effective dose by 13 – 19% on average
 - scanner matching is a factor
- average mAs for the scan provides sufficient accuracy
What you should know

<table>
<thead>
<tr>
<th>source of error</th>
<th>error</th>
<th>optimisation technique</th>
<th>optimised error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte Carlo codes</td>
<td>7 %</td>
<td>none</td>
<td>7 %</td>
</tr>
<tr>
<td>scan range</td>
<td>40 %</td>
<td>match fraction of irradiated organs</td>
<td>20 %</td>
</tr>
<tr>
<td>helical over-ranging</td>
<td>13 % for 16-SCT</td>
<td>add helical over-range</td>
<td>~ 0 %</td>
</tr>
<tr>
<td>patient size</td>
<td>13 % for 30 kg deviation</td>
<td>correct for patient size</td>
<td>~ 0 %</td>
</tr>
<tr>
<td>mA modulation</td>
<td>13 %*</td>
<td>average mAs or CTDI$_{vol}$</td>
<td>13 %*</td>
</tr>
<tr>
<td>combined</td>
<td>46 %</td>
<td></td>
<td>25 %</td>
</tr>
</tbody>
</table>

* comparison of Link-RMH effective doses with and without tube current modulation
Conclusions

• effective doses can be calculated with 25% accuracy if
 – set scan range by matching fractions of organs irradiated
 – include helical over-range
 – correct for patient size
 – use average mAs for the scan

• effective doses can be calculated with 45% accuracy for 50 – 90 kg patients otherwise