Calculation of Effective Doses for Radiotherapy Cone-Beam CT and Nuclear Medicine Hawkeye CT

Laura Sawyer

Department of Medical Physics and Bioengineering, Royal United Hospital, Bath
Overview

- **Varian Acuity ConeBeam CT**
 - ConeBeam CT option available Sept 2005
 - Aim to use for breast and pelvis treatment planning

- **GE Infinia Hawkeye SPECT / CT**
 - Installed in March 2006
 - Enables registration of CT and Nuclear Medicine Images
ConeBeam CT

• Full Fan
 – irradiates uniformly over 360°
 – Single rotation produces full image

• Partial Fan
 – for larger fields of view
 – Detector is offset
 – Centre of field of view is irradiated for whole rotation
 – Edge of field of view is irradiated for fraction of the rotation
ConeBeam CT

• System upgrade in October 2006
 – Allows images to be ‘stitched’
 – Images are acquired in 1, 2 or 3 rotations.
 – Images acquired using a single rotation can be collimated
 – Irradiated length at isocentre exceeds image length
 – For double and triple scans, irradiation at the isocentre overlaps at stitching area
 • 10cm overlap for 2.5mm slice width
 • 13.6cm overlap for 10mm slice width
 – It is not possible to collimate double and triple scans
Infinia Hawkeye CT

- All clinical scans use ‘half scan’ setting
 - 240° exposure per 360° rotation
- Rotational increment programmed between slices
 - Changes the 240° section irradiated

Doses were measured using CTDI head and body phantoms (16cm and 32cm diameters)
Effective Dose Calculations

Three calculation methods were compared:

1. IMPACT CT Patient Dosimetry Calculator

2. Combination of tissue weighting factors and fraction of organs in the beam

3. NRPB W-67 Effective dose conversion factors
IMPACT CT Patient Dosimetry Calculator

• Each scanner was matched to an existing CT scanner
 – Using ratio of dose measurements in air, to doses at centre and periphery of head and body phantoms

• Both scanners use maximum exposure parameters
 – ConeBeam CT: 125kV, 80mA, 15ms pulse, 45s rotation
 – Infinia Hawkeye: 140kV, 2.5mA, 2.6rpm, 10mm slice
IMPACT CT Patient Dosimetry Calculator for ConeBeam CT

- Assumes uniform irradiation
 - Correct for ConeBeam CT full fan
- Estimation only for partial fan
 - Assumes gradual variation in dose
 - Small high dose area at centre
 - Doses to organs between centre and periphery of body will be overestimated
 - E.g. lung, colon, stomach, liver
- For double and triple scans
 - Calculate dose for full scan length
 - Add dose at stitching overlap
IMPACT CT Patient Dosimetry Calculator for Infinia Hawkeye

• Variation in dose around periphery
 – Due to 240° irradiation
 – And couch attenuation

• Average peripheral dose used for scanner match
 – Irradiated area varies due to rotation increment between slices
 – Organs exceeding 15cm length will receive approximately uniform irradiation
 – Dose will be underestimated if small radiosensitive organ is at irradiated surface e.g. thyroid
Organ Fractions Calculation

• Estimate fraction of each radiosensitive organ in the beam for common scans
 – Using IMPACT phantom
• Multiply by measured dose in phantom
• Multiply by tissue weighting factors
• Sum results for all organs
Organ Fractions Calculation: Infinia Hawkeye

- Clinical settings, with ‘half scan’
 - Average peripheral dose: 4mGy
 - Central dose: 2mGy

<table>
<thead>
<tr>
<th>Chest scan</th>
<th>Weighting factor</th>
<th>CTDI (mGy)</th>
<th>Fraction in beam</th>
<th>Organ dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>0.12</td>
<td>2</td>
<td>1</td>
<td>0.24</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.12</td>
<td>2</td>
<td>0.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.05</td>
<td>4</td>
<td>0.2</td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
</tbody>
</table>
Organ Fractions Calculation: ConeBeam CT

• Partial fan for body scans
 – Average periphery: 20mGy
 – Centre: 12mGy
 – Average mid-points: 14mGy

• Dose measurements at mid-points correspond to dose at edge of head phantom
 – Apply mid-point doses to lung, stomach, liver

• For double and triple scans
 – Calculate dose for total scan length
 – Add dose for overlap in centre of scan
NRPB W-67 Effective Dose Conversion Factors

• Calculate dose length product:
 – CTDI (mGy/mAs)
 – mAs = mA x rotation time (x pulse length x frame rate)
 – Scan length

• Effective doses per DLP (mSv (mSv cm)^{-1})
 – Head: 0.0021
 – Chest: 0.014
 – Abdo-pelvis: 0.015
Comparison of Methods for Infinia Hawkeye

<table>
<thead>
<tr>
<th>Effective dose (mSv)</th>
<th>Chest</th>
<th>Abdo-pelvis</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPACT</td>
<td>1.0</td>
<td>1.6</td>
<td>0.10</td>
</tr>
<tr>
<td>Organ fraction</td>
<td>0.8</td>
<td>1.5</td>
<td>0.12</td>
</tr>
<tr>
<td>Conversion factors</td>
<td>0.9</td>
<td>1.5</td>
<td>0.11</td>
</tr>
<tr>
<td>Standard CT</td>
<td>2.6</td>
<td>6.2</td>
<td>1.4</td>
</tr>
</tbody>
</table>

- Standard scan lengths used in CT
- Good agreement between calculation methods
- Effective doses lower than standard CT due to low mAs
Comparison of Methods for ConeBeam CT (single scan)

<table>
<thead>
<tr>
<th>Effective Dose (mGy)</th>
<th>Chest</th>
<th>Abdo-pelvis</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPACT</td>
<td>9.9</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>Organ fraction</td>
<td>4.7</td>
<td>5.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Conversion factors</td>
<td>5.8</td>
<td>6.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Standard CT</td>
<td>2.6</td>
<td>6.2</td>
<td>1.4</td>
</tr>
</tbody>
</table>

- **IMPACT calculation**: Overestimates doses to organs between centre and periphery of body
- **Organ fraction method**: Underestimates dose due to exclusion of scattered radiation to organs outside beam
ConeBeam CT: Stitched Images

- A single scan will produce a maximum image length of 14.4cm
- Data from 2 rotations may be stitched to produce a maximum image length of 28.8cm
 - Total image length depends on slice width selected
 - Overlap in centre of image depends on slice width
 - Total irradiated length is independent of slice width
 - Therefore, effective dose has negligible dependence on slice width
- Abdo-pelvis scans generally use double scan
Summary: Calculation Methods

- **Infinia Hawkeye CT**
 - Methods for calculating effective dose are in good agreement with one another

- **ConeBeam CT**
 - There is significant variation in doses
 - IMPACT method overestimates dose
 - Organ fraction method underestimates dose
Summary: Effective Doses

• Hawkeye doses are below diagnostic CT results
 – Half-scan setting is used for all patients
 – Scan length is determined individually for each patient
 – No option to reduce kV or mA

• ConeBeam CT doses may significantly exceed diagnostic CT doses
 – No option to reduce kV, mA
 – Recommendations:
 • Single scan should be used wherever possible
 • Longer pulse lengths only used for very low contrast details
 • Slice widths of 3-5mm compromise between data storage, reconstruction times, and prevention of double overlap
 • Double and triple scans only used where clinically justified