The relationship between image noise and spatial resolution of CT scanners

Sue Edyvean, Nicholas Keat, Maria Lewis, Julia Barrett, Salem Sassi, David Platten

ImPACT*, St George’s Hospital, London
*An MDA device evaluation group, www.impactscan.org
Image noise and spatial resolution

• Aims
 – Describe the origins of the ImPACT Q factor
 – Explore the proportionality relationships
 • in particular; noise against resolution
 – From the findings, look at some implications
The ImPACT Q factor

• Describes a relationship of image quality with respect to dose

\[Q \propto \sqrt[\frac{f^3}{\sigma^2 z D}} \]

- \(f \) = spatial resolution
- \(\sigma \) = image noise
- \(z \) = slice width
- \(D \) = dose

• High Q factor
 – good ‘image quality’ with low dose
 – high spatial resolution, low noise, narrow slice
The ImPACT Q factor

- Drawn from the proportional relationship

\[\sigma^2 \propto \frac{f^3}{zD} \]

- \(f = \) spatial resolution expressed as a frequency (c/cm)
- \(\sigma = \) image noise
- \(z = \) slice width
- \(D = \) dose
Theoretical derivation

• Rodney Brookes and Giovanni di-Chiro (1976)
 Statistical limitations in x-ray reconstructive tomography
 Medical Physics Vol 3, No 4 July 1976

• Riederer S.J., Pelc N.J. and Chesler D.A. (1978)
 The Noise Power Spectrum in Computed Tomography
 Physics in Medicine and Biology 1978 23(3), 446-454

\[\sigma^2(\mu) = \frac{\pi^2 \beta \gamma(E) e^\alpha \mu_{en} E}{1200 \omega^3 z D} \]
Other publications, reports and books

- Bassano D.A. (1980, AAPM Summer School)
 - Specification and Quality Assurance for CT Scanners
 - Measurement of Performance Characteristics of CT Scanners
- Farr RF and Allisy-Roberts PJ (1997)
 - Physics for Medical Imaging
- Seeram E., 2000
 - Computed Tomography, Physical Principles, Clinical Applications and Quality Control (2nd Edition)

\[
\sigma^2 \alpha \frac{f^3}{z^2 D}
\]
Unpacking the relationship

- noise relationship with number of photons
 - established

\[
\sigma^2 \propto \frac{1}{N}
\]

- number of photons
 - proportional to slice thickness and mAs (dose)

\[
\sigma^2 \propto \frac{1}{zD}
\]
Unpacking the relationship

- noise relationship with spatial resolution?

\[
\sigma^2 \propto f^3 \quad \ldots ?
\]

\[
\sigma^2 \propto \frac{f^3}{zD}
\]
Empirical approach

- measure image noise and spatial resolution
- range of convolution kernels

@ constant dose and slice width

\[\sigma^2 \alpha \frac{f^3}{zD} \]
Image noise

water filled phantom

scan projection
radiograph

image

‘noise’ = standard deviation (σ) of CT values in region of interest
Spatial resolution

ESF → MTF

high contrast edge

sharp image

smooth image

spatial frequency (cm⁻¹)

MTF (%)

Position Along Edge
Modulation transfer function

• resolution descriptors
 – frequency at MTF_{50}
 – frequency at MTF_{10}
 – Q uses average of MTF_{50}, MTF_{10}

• more recently
 – MTF_{80}
 – $\text{MTF}_{2} \approx \text{‘cut-off’}$
 – integral (area under curve)
Scanners and algorithms used

- IGE Lightspeed
 - h: soft, standard, lung, detail, bone, edge
 - b: soft, standard, lung, detail, bone, edge
- Siemens Volume Zoom
 - h: AH..10,20,30,40,50,60,70
 - b: AB...10,20,30,40,50,60
- Toshiba Aquilion
 - h: FC…20,21,22,23,24,25,26,27,28,30,80
 - b: FC....10,11,12,13,14,30
- Marconi (Philips) MX8000
 - h: A,EB,EC,B,C,D
 - b: A,EC,B,C,D
Siemens VZ, all algorithms, head scans

Average of MTF_{50} and MTF_{10}

$\log \% \text{ noise}$ for 40 mGy

$\sigma^2 \propto f^{5.7}$

$R^2 = 0.9916$

Power 5.7

Different algorithms

$\sigma^2 \propto f^3$

Power 3

$\sigma^2 \propto f^{5.7}$

(f) Average of MTF_{50} and MTF_{10}
Empirical view of noise versus resolution

• early papers only considered simple algorithms
 – ramp filter and Hanning weighted
 – some filter frequencies boosted very differently
Siemens VZ, low res. algorithms, head scans

Average of MTF_{50} and MTF_{10}

\[\text{log } \% \text{ noise } (\sigma) \]

Power 4.6

\[R^2 = 0.9948 \]

Power 3

(f) Average of MTF_{50} and MTF_{10}
All scanners, all algorithms, body scans

![Graph showing the relationship between log % noise for 40 mGy and average of MTF50 and MTF10.](graph)

- **power 5.1**: $R^2 = 0.999$
- **power 4.8**: $R^2 = 0.9795$
- **power 4.3**: $R^2 = 0.9879$
- **power 5.7**: $R^2 = 0.9511$

Symbols:
- **LightSpeed**
- **Mx8000**
- **Aquilion**
- **VolumeZoom**
All scanners, low res. algs, body scans

\[(f) \text{ Average of } MTF_{50} \text{ and } MTF_{10} \]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>R²</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>LightSpeed</td>
<td>0.999</td>
<td>4.9</td>
</tr>
<tr>
<td>Mx8000</td>
<td>0.9795</td>
<td>3.6</td>
</tr>
<tr>
<td>Aquilion</td>
<td>0.9879</td>
<td>3.9</td>
</tr>
<tr>
<td>VolumeZoom</td>
<td>0.9511</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Empirical view of noise versus resolution

• early papers
 – derivations focussed on limiting resolution characteristics
eg detector aperture
Mean of all scanners, all MTF, all algorithms

Body scans

<table>
<thead>
<tr>
<th>parameter</th>
<th>resolution power for sigma 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
</tr>
<tr>
<td>mtf_{80}</td>
<td>3.0</td>
</tr>
<tr>
<td>mtf_{50}</td>
<td>4.2</td>
</tr>
<tr>
<td>mtf_{10}</td>
<td>5.2</td>
</tr>
<tr>
<td>mtf_{2}</td>
<td>3.0</td>
</tr>
<tr>
<td>mtf_{integral}</td>
<td>3.9</td>
</tr>
<tr>
<td>$\text{avg}_{MTF50,10}$</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Empirical view of noise versus resolution

- power factor for MTF_{50} and MTF_{10} is greater than 3; ~ between 4 and 5

\[\sigma^2 \propto \frac{f \approx 4-5}{z \cdot D} \]
Empirical view of noise versus resolution

• how does this affect the calculation of Q?
• minimise the influence of the power relationship
 – specify resolution
 • eg. body resolution values of $\text{MTF}_{50} = 3.4$ c/cm, $\text{MTF}_{10} = 6$ c/cm
 – find algorithm giving resolution data closest to that value
 – calculate Q

\[
Q \propto \sqrt{\frac{f^3}{\sigma^2 z D}}
\]
All scanners, body scans, lower resolution algorithms

use a specific average MTF_{50} and MTF_{10} value

% noise for 40 mGy

Average of MTF_{50} and MTF_{10}
All scanners, body scans, lower resolution algorithms

\[\sigma^2 \propto f^3 \]

% noise for 40 mGy

Average of MTF\(_{50}\) and MTF\(_{10}\)
All scanners, body scans, lower resolution algorithms

% noise for 40 mGy

Average of MTF_{50} and MTF_{10}

- LightSpeed
- Mx8000
- Aquilion
- VolumeZoom
Conclusion

• The ImPACT Q factor relies on an established relationship

\[\sigma^2 \propto \frac{f^3}{zD} \]

• using average resolution parameters from the MTF, the noise squared relationship to resolution is shown to be to a power greater than 3

\[\sigma^2 \propto \frac{f^{4-5}}{zD} \]

• by choosing algorithms close to a fixed spatial resolution the algorithm dependence is minimised
The relationship between image noise and spatial resolution of CT scanners

Sue Edyvean, Nicholas Keat, Maria Lewis, Julia Barrett, Salem Sassi, David Platten

ImPACT*, St George’s Hospital, London
*An MDA device evaluation group, www.impactscan.org
Theoretical Relationships

- Rodney Brookes and Giovanni di-Chiro

Statistical error in reconstructed image i.e. image noise

\[\sigma^2(\mu) = \frac{\pi^2 \beta \gamma(E) e^\alpha \mu_{en} E}{1200 \omega^3 h D} \]

- Logarithmic attenuation
- Energy absorption co-efficient
- Photon energy
- Dose
- Detector aperture
- Slice width
- Average depth dose factor
- Beam spreading factor (non parallel rays)
Theoretical Relationships

\[\sigma^2(\mu) = \frac{\pi^2 \beta \gamma(E) e^\alpha \mu_{en} E}{1200 \omega^3 z D} \]
Microtomography - Basics

\[Time \propto \frac{SNR^2}{\rho \mu r^4} \exp\left(\frac{\mu d}{2}\right) \]

- \(SNR \) = signal-to-noise resolution
- \(\rho \) = density
- \(\mu \) = linear attenuation coefficient
- \(r \) = voxel dimension
- \(d \) = object diameter

Courtesy of Dr. E.J. Morton, Department of Physics, University of Surrey
Mean of all scanners, average $\text{MTF}_{50,10}$

<table>
<thead>
<tr>
<th></th>
<th>all algorithms</th>
<th></th>
<th>low res. algorithms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>range +/-</td>
<td>mean</td>
<td>range +/-</td>
</tr>
<tr>
<td>body</td>
<td>5.0</td>
<td>0.7</td>
<td>4.1</td>
<td>0.6</td>
</tr>
<tr>
<td>head</td>
<td>5.5</td>
<td>0.3</td>
<td>4.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>

- $\text{MTF}_{50,10}$ lower by 20% with lower res. algos.
- Head ~ 10% higher than body
- Power factor between 4 and 5
The ImPACT Q factor

- Describes image quality with respect to dose

- High Q (quality) factor
 - good ‘image quality’ at low dose
 - image quality in terms of
 - high spatial resolution, low noise, narrow slice

\[
Q \propto \sqrt{\frac{f^3}{\sigma^2 z D}}
\]

- \(f \) = spatial resolution
- \(\sigma \) = image noise
- \(z \) = slice width
- \(D \) = dose
Unpacking the relationship

- noise relationship with number of photons
 - established

$$\sigma^2 \propto \frac{f^3}{zD}$$

- number of photons
 - proportional to slice thickness and mAs (dose)

$$\sigma^2 \propto \frac{1}{N}$$

$$\sigma^2 \propto \frac{1}{zD}$$
Empirical view of noise versus resolution

- power factor is greater than 3; ~ between 4 and 5
- early papers only considered simple algorithms
 - ramp filter and Hanning weighted
 - some filter frequencies boosted very differently
 - theory looked at limiting resolution
Theoretical derivation

- Rodney Brookes and Giovanni di-Chiro (1976)
 Statistical limitations in x-ray reconstructive tomography
 Medical Physics Vol 3, No 4 July 1976

 The Noise Power Spectrum in Computed Tomography
 Physics in Medicine and Biology 1978 23(3), 446-454

\[\sigma^2(\mu) = \frac{\pi^2 \beta \gamma(E) e^\alpha \mu_{en} E}{1200 \omega^3 \gamma D} \]
Theoretical derivation

- Rodney Brookes and Giovanni di-Chiro (1976)
 Statistical limitations in x-ray reconstructive tomography
 Medical Physics Vol 3, No 4 July 1976

 The Noise Power Spectrum in Computed Tomography
 Physics in Medicine and Biology 1978 23(3), 446-454